Skip to main content
Log in

Effect of Scandium on the Interaction of Concurrent Precipitation and Recrystallization in Commercial AA3003 Aluminum Alloy

  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

In the current study, the effect of Sc addition on the interaction of concurrent precipitation and recrystallization in commercial AA3003 aluminum alloy was investigated using optical microscopy, scanning electron microscopy, and transmission electron microscopy. In case of AA3003 alloy, which was cold rolled to a true strain of 2.20 and heated at a heating rate of 150 K/s, the onset of precipitation and ending of recrystallization are signified by the critical temperature, T C ~740 K (467 °C). There is a change in the shape of the recrystallized grains from pancake-like to equiaxed shape, as the annealing temperature increases greater than T C. In case of AA3003 alloy microalloyed with 0.4 wt pct of Sc, the high no. density precipitation of coherent Al3Sc precipitates always occurs before recrystallization because of the small nucleation barrier and high rate of decomposition. This leads to extremely coarse pancake-like recrystallization grains with high fraction of low-angle grain boundaries in the entire annealing temperature range, even at a high brazing temperature of 883 K (610 °C).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. W.S. Miller, L. Zhuang, J. Bottema, A.J. Wittebrood, P. De Smet, A. Haszler and A. Vieregge, Mater. Sci. Eng. A 2000, vol. 280A, pp. 37-49.

    Article  Google Scholar 

  2. D.M. Turriff, S.F. Corbin and M. Kozdras, Acta Mater. 2010, vol. 58, pp. 1332-41.

    Article  Google Scholar 

  3. A.J. Witterbrood, Microstructural Changes in Brazing Sheet due to Solid-Liquid Interaction, Corus Technology BV, London 2009.

    Google Scholar 

  4. J.S. Yoon, S.H. Lee and M.S. Kim, J. Mater. Process. Technol. 2001, vol. 111, pp. 85-89.

    Article  Google Scholar 

  5. J.S. Ryu, M.S. Kim and D. Jung, J. Mater. Process. Technol. 2002, vol. 130, pp. 240-44.

    Article  Google Scholar 

  6. Y.Y. Tu, Z. Tong and J.Q. Jiang, Metall. Mater. Trans. A 2013, vol. 44A, pp. 1760-66.

    Article  Google Scholar 

  7. M. Somerday and F.J. Humphreys, Mater. Sci. Technol. 2003, vol. 19, pp. 20-29.

    Article  Google Scholar 

  8. P. Furrer and G. Hausch, Met. Sci. 1979, vol. 13, pp. 155-62.

    Article  Google Scholar 

  9. M.J. Jones and F.J. Humphreys, Acta Mater. 2003, vol. 51, pp. 2149-59.

    Article  Google Scholar 

  10. F.J. Humphreys, Acta Metall. 1977, vol. 25, pp. 1323-44.

    Article  Google Scholar 

  11. L.S. Toropova, D.G. Eskin, M.L. Kharakterova and T.V. Dobatkina (1998) Advanced Aluminum Alloys Containing Scandium: Structure and Properties, Amsterdam: Gordon & Breach.

    Google Scholar 

  12. S. Tangen, K. Sjølstad, T. Furu and E. Nes, Metall. Mater. Trans. A 2010, vol. 41, pp. 2970-83.

    Article  Google Scholar 

  13. G. Ghosh, J. Miyake and M.E. Fine, JOM 1997, vol. 49, pp. 56-60.

    Article  Google Scholar 

  14. M.A. Dewan, Muhammad Akbar Rhamdhani, J.B. Mitchell, C.J. Davidson, G.A. Brooks, M. Easton and J.F. Grandfield (2011) Materials Science Forum, (Trans Tech Publ., Durnten), pp 149–60.

    Google Scholar 

  15. Gabriel M. Novotny and Alan J. Ardell, Mater. Sci. Eng. A 2001, vol. 318A, pp. 144-54.

    Article  Google Scholar 

  16. E.A. Marquis and D.N. Seidman, Acta Mater. 2001, vol. 49, pp. 1909-19.

    Article  Google Scholar 

  17. Z. Liu, V. Mohles, O. Engler, and G. Gottstein: in TMS 2011 140 th Annual Meeting and Exhibition, Materials Fabrication, Properties, Characterization, and Modeling, Wiley-TMS, 2011, p. 449.

  18. F. Gao, H. Zhao, D.P. Sekulic, Y.Y. Qian and L. Walker, Mater. Sci. Eng. A Struct. 2002, vol. 337, pp. 228-35.

    Article  Google Scholar 

  19. W.S. Miller, L. Zhuang, J. Bottema, A. Wittebrood, P. De Smet, A. Haszler and A. Vieregge, Mater. Sci. Eng. A Struct. 2000, vol. 280, pp. 37-49.

    Article  Google Scholar 

  20. D.P. Sekulic, P.K. Galenko, M.D. Krivilyov, L. Walker and F. Gao, Int. J. Heat Mass Transf. 2005, vol. 48, pp. 2372-84.

    Article  Google Scholar 

  21. D. P. Sekulic, P. K. Galenko, M. D. Krivilyov, L. Walker and F. Gao, Int. J. Heat Mass Transf. 2005, vol. 48, pp. 2385-96.

    Article  Google Scholar 

  22. R.W. Balluffi, Metall. Trans. B 1982, vol. 13B, pp. 527-53.

    Article  Google Scholar 

  23. N. L. Peterson, Int. Mater. Rev. 1983, vol. 28, pp. 65-91.

    Article  Google Scholar 

  24. R.D. Doherty, Encyclopedia of Materials: Science and Technology. Elsevier, Oxford 2005, pp. 7847-50.

    Google Scholar 

  25. L. E. Murr: Interfacial phenomena in metals and alloys. (Addison-Wesley Pub. Co., Advanced Book Program, 1975).

    Google Scholar 

  26. F.J. Humphreys, M. Hatherly (2004) Recrystallization and related annealing phenomena. Elsevier, Oxford.

    Google Scholar 

  27. R.W. Hyland, M. Asta, S.M. Foiles, C.L. Rohrer (1998) Acta Mater. 46:3667-78.

    Article  Google Scholar 

  28. J. Røyset and N. Ryum, Int. Mater. Rev. 2005, vol. 50, pp. 19-44.

    Article  Google Scholar 

  29. M Vlach, I Stulíková, B Smola, H Císarová, J Piešová, S Daniš, R Gemma, D Tanprayoon and V Neubert, Acta Phys. Pol. A Gen. Phys. 2012, vol. 122, p. 439-43.

    Google Scholar 

  30. M. Vlach, I. Stulíková, B. Smola, H. Císařová, J. Plášek, V. Očenášek, D. Tanprayoon, and V. Neubert: in Metal 2012 Conference Proceedings, 2012, pp. 1142–49.

  31. Y. Zhou, W.F. Gale and T.H. North, Int. Mater. Rev. 1995, vol. 40, pp. 181-96.

    Article  Google Scholar 

  32. W. Ludwig, E. Pereiro-López and D. Bellet, Acta Mater 2005, vol. 53, pp. 151-62.

    Article  Google Scholar 

  33. A.J. McAlister and J.L. Murray, J. Phase Equilib. 1987, vol. 8, pp. 438-47.

    Article  Google Scholar 

  34. Åke Jansson, Metall. Trans. A 1992, vol. 23A, pp. 2953-62.

    Article  Google Scholar 

Download references

Acknowledgments

The current study was sponsored by Jiangsu Science Foundation (BK2011615, BY2011145 and BA2011024). The authors gratefully acknowledge Jiangsu Alcha Aluminum Co. Ltd. for assistance in the preparation of the alloys.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yiyou Tu.

Additional information

Manuscript submitted July 13, 2013.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tu, Y., Qian, H., Zhou, X. et al. Effect of Scandium on the Interaction of Concurrent Precipitation and Recrystallization in Commercial AA3003 Aluminum Alloy. Metall Mater Trans A 45, 1883–1891 (2014). https://doi.org/10.1007/s11661-013-2136-6

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-013-2136-6

Keywords

Navigation