Advertisement

Metallurgical and Materials Transactions A

, Volume 45, Issue 4, pp 1962–1978 | Cite as

Impulse Excitation Internal Friction Study of Dislocation and Point Defect Interactions in Ultra-Low Carbon Bake-Hardenable Steel

  • Il-Chan Jung
  • Deok-Gu Kang
  • Bruno C. De Cooman
Article

Abstract

The simultaneous presence of interstitial solutes and dislocations in an ultra-low carbon bake-hardenable steel gives rise to two characteristic peaks in the internal friction (IF) spectrum: the dislocation-enhanced Snoek peak and the Snoek–Kê–Köster peak. These IF peaks were used to study the dislocation structure developed by the pre-straining and the static strain aging effect of C during the bake-hardening process. A Ti-stabilized interstitial-free steel was used to ascertain the absence of a γ-peak in the IF spectrum of the deformed ultra-low carbon steel. The analysis of the IF data shows clearly that the bake-hardening effect in ultra-low carbon steel is entirely due to atmosphere formation, with the dislocation segment length being the main parameter affecting the IF peak amplitude. Recovery annealing experiments showed that the rearrangement of the dislocation structure lead to the elimination of the C atmosphere.

Keywords

Dislocation Density Internal Friction Screw Dislocation Dynamic Strain Aging Dislocation Segment 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgments

The authors sincerely acknowledge the support of the POSCO Technical Research Laboratories.

References

  1. 1.
    Bordoni, P.G. (1949) Ric. Sci., 19(7), 851–62.Google Scholar
  2. 2.
    A. Seeger and W. Wasserbach: Mater. Tech., 2003, vols. 7–8–9, pp. 51–61.Google Scholar
  3. 3.
    Brunner, D., Diehl, J. (1991) Phys. Status Solidi (A) 124, pp. 155–70.CrossRefGoogle Scholar
  4. 4.
    Brunner, D., Diehl, J. (1991) Phys. Status Solidi (A), 124, pp. 455–64.CrossRefGoogle Scholar
  5. 5.
    Brunner, D., Diehl, J. (1991) Phys. Status Solidi (A), 124, pp. 203-16.CrossRefGoogle Scholar
  6. 6.
    Seeger, A. (2004) Mater. Sci. Eng. A, 370 (1-2), pp. 50-66.CrossRefGoogle Scholar
  7. 7.
    Hahn, G.T. (1962) Acta Metall., 10 (8), pp. 727-38.CrossRefGoogle Scholar
  8. 8.
    Lee, S.-J., Kim, J., Kane, S.N., De Cooman, B.C., (2011) Acta Mater., 59 (17), pp. 6809-19.CrossRefGoogle Scholar
  9. 9.
    Brown, R.A., (1982) Can. J. Phys. 60, p. 766.CrossRefGoogle Scholar
  10. 10.
    Tanaka, K., Watanabe, T (1972) Jpn. J. Appl. Phys. 11(10), 1429–39.CrossRefGoogle Scholar
  11. 11.
    Yoshikawa, A., Okamoto, M., (1967) J. Phys. Soc. Jpn. 22 pp.996–1004.CrossRefGoogle Scholar
  12. 12.
    Karolik, A.S., Luhvich, A.A. (1994) J. Phys. Condens. Matter, 6 (4), pp. 873-86.CrossRefGoogle Scholar
  13. 13.
    Basinski, Z.S., Dugdale, J.S., Howie, A., (1963) Philos. Mag., 8 pp.1989–97.CrossRefGoogle Scholar
  14. 14.
    Nowick, A.S., Berry, B.S. (1972) Anelastic Relaxation in Crystalline Solids. New York: Academic Press.Google Scholar
  15. 15.
    Fuoss, R.M., Kirkwood J.G. (1952) J. Am. Chem. Soc., 63, pp. 385–94.CrossRefGoogle Scholar
  16. 16.
    Eloot, K., Dilewijns, J. (1997) ISIJ Int., 37 (6), pp. 610-14.CrossRefGoogle Scholar
  17. 17.
    Eloot, K., Kestens, L., Dilewijns, J. (1997) ISIJ Int., 37 (6), pp. 615-22.CrossRefGoogle Scholar
  18. 18.
    H. Saitoh, N. Yoshinaga, K. Ushioda, and O. Akisue: Collected Abstract of the 1991 Meeting of JIM, 1991, p. 97.Google Scholar
  19. 19.
    Swartz, J.G. (1969) Acta Metall., 17 (12), pp. 1511-15.CrossRefGoogle Scholar
  20. 20.
    Saitoh, H., Ushioda, K. (1993) Mater. Trans. JIM 34 (1), pp. 13-19.CrossRefGoogle Scholar
  21. 21.
    M. Weller, M. Feuerbacher, J. Diehl, and K. Urban: J. Phys. Paris, IV, 1996, vol. 6, pp. C8-239–C8-242.Google Scholar
  22. 22.
    De, A.K., Vandeputte, S., De Cooman, B.C. (2001) Scripta Materialia, 44 (4), pp. 695-701.CrossRefGoogle Scholar
  23. 23.
    Leslie, W.C. (1961) Acta Metall., 9 (11), pp. 1004-22.CrossRefGoogle Scholar
  24. 24.
    A.H. Cottrell and B.A. Bilby: Proc. Phys. Soc. Sect. A, 1949, vol. 62 (1), art. no. 308, pp. 49–62.Google Scholar
  25. 25.
    Mecking, H., Kocks, U.F. (1981) Acta Metall., 29 (11), pp. 1865-75.CrossRefGoogle Scholar
  26. 26.
    Estrin, Y., Kubin, L.P. (1986) Acta Metall., 34 (12), pp. 2455-64.CrossRefGoogle Scholar
  27. 27.
    V. Hivert, P. Groh, P. Moser, and W. Frank: Phys. Status Solidi (A) Appl. Res., 1977, vol. 42 (2), pp. 511–18.Google Scholar
  28. 28.
    Pal-val, P.P., Natsik, V.D., Kadeckova, S. (1988) Phys Status Solidi A 105: K37-K40.CrossRefGoogle Scholar
  29. 29.
    H. Mizubayashi, H. Kronmüller, and A. Seeger: Le J. Phys. Colloques, 1985, vol. 46 (C10), pp. 309–12.Google Scholar
  30. 30.
    Shimada, M., Sakamoto, K. (1979) Scripta Metall., 13 (12), pp. 1177-82.CrossRefGoogle Scholar
  31. 31.
    L. Magalas and S. Gorczyca: Le J. Phys. Colloques, 1985, vol. 46 (C10), pp. 253–56.Google Scholar
  32. 32.
    Magalas, L. and K. Ngai (1997). ASTM Spec. Tech. Publ. 1304, pp.189–203.Google Scholar
  33. 33.
    Koster, W., Bangert, L., Hahn, R. (1954) Arch. Eisenhutt 25 pp. 569-78.Google Scholar
  34. 34.
    Mura, T., Tamura, I., Brittain, J. O. (1961) J. Appl. Phys. 32(1) pp. 92-96.CrossRefGoogle Scholar
  35. 35.
    Chambers, R., Schultz, J., (1961) Phys. Rev. Lett. 6(6), pp. 273-75.CrossRefGoogle Scholar
  36. 36.
    McGrath, J., Rawlings R.,(1966) Acta Metall. 14(1), pp.1-4.CrossRefGoogle Scholar
  37. 37.
    Surin, A.I., Blanter, M.S. (1970) Fiz Metall. Metall. 29(1), pp.199-201.Google Scholar
  38. 38.
    A. Seeger and C. Wutrich: iL Nuovo Cimento, 1976, vol. 33B, pp. 38–74.Google Scholar
  39. 39.
    A. Seeger: J. Phys., 1981, vol. 42 (C5), pp. C5–C201.Google Scholar
  40. 40.
    Chen, L.-Q., Wang, C.-Y., Yu, T. (2008) Chin. Phys. B, 17 (2), pp. 662-68.CrossRefGoogle Scholar
  41. 41.
    T.D. Swinburne, S.L. Dudarev, S.P. Fitzgerald, M.R. Gilbert, and A.P. Sutton: Phys. Rev. B Condens. Matter Mater. Phys., 2013, vol. 87 (6), art. no. 064108.Google Scholar
  42. 42.
    L. Ventelon, F. Willaime, and P. Leyronnas: J. Nucl. Mater., 2009, vol. 386–388 (C), pp. 26–29.Google Scholar
  43. 43.
    Itakura, M., Kaburaki, H., Yamaguchi, M. (2012) Acta Mater., 60 (9), pp. 3698-710.CrossRefGoogle Scholar
  44. 44.
    L. Proville, L. Ventelon, and D. Rodney: Phys. Rev. B Condens. Matter Mater. Phys., 2013, vol. 87 (14), art. no. 144106.Google Scholar
  45. 45.
    Wen, M., Fukuyama, S., Yokogawa, K. (2003) Acta Mater., 51 (6), pp. 1767-73.CrossRefGoogle Scholar
  46. 46.
    Spitzig, W.A., Keh, A.S. (1970) Acta Metall., 18 (9), pp. 1021-33.CrossRefGoogle Scholar
  47. 47.
    Sato, A., Meshii, M. (1973) Acta Metall., 21 (6), pp. 753-68.CrossRefGoogle Scholar
  48. 48.
    Schoek, G. (1965) Phys. Rev., 102, pp. 1458–59.CrossRefGoogle Scholar
  49. 49.
    A. Seeger, M. Weller, J. Diehl, Z.I. Pan, J.X. Zhang, and T.S. Ke: Z. Metall., 1982, vol. 73, p. 1–20.Google Scholar
  50. 50.
    Schoeck, G. (1963), Acta Metall., Vol.11, pp. 617–22.CrossRefGoogle Scholar
  51. 51.
    Seeger, A. (1979), Phys. Status Solidi (A), Vol.55, pp.457–68.CrossRefGoogle Scholar
  52. 52.
    Schoek, G. (1982), Scripta Metall., vol. 10, pp. 233–39.CrossRefGoogle Scholar
  53. 53.
    Seeger, A. (1982), Scripta Metall., Vol. 10, pp. 241–47.CrossRefGoogle Scholar
  54. 54.
    K.L. Ngai, Y.-N. Wang, and L.B. Magalas: J. Alloys Compd., 1994, vols. 211–212 (C), pp. 327–32.Google Scholar
  55. 55.
    Jung, I., De Cooman, B.C. (2012) Diffus. Defect Data B Solid State Phenom., 184, pp. 209-14.CrossRefGoogle Scholar
  56. 56.
    G. Gremaud: Mechanical Spectroscopy Q-1 2001, R. Schaller, G. Fantozzi, and G. Gremaud, eds., Trans Tech Publications, Uetikon-Zuerich, 2001, pp. 178–247.Google Scholar
  57. 57.
    R.G.A. Veiga, M. Perez, C.S. Becquart, and C. Domain: J. Phys. Condens. Matter, 2013, vol. 25 (2), art. no. 025401.Google Scholar
  58. 58.
    Wilde, J., Cerezo, A., Smith, G.D.W. (2000) Scripta Mater., 43 (1), pp. 39-48.CrossRefGoogle Scholar
  59. 59.
    Clouet, E., Garruchet, S., Nguyen, H., Perez, M., Becquart, C.S. (2008) Acta Materialia, 56 (14), pp. 3450-60.CrossRefGoogle Scholar

Copyright information

© The Minerals, Metals & Materials Society and ASM International 2013

Authors and Affiliations

  • Il-Chan Jung
    • 1
  • Deok-Gu Kang
    • 2
  • Bruno C. De Cooman
    • 1
  1. 1.Materials Design Laboratory, Graduate Institute of Ferrous Technology PohangUniversity of Science and TechnologyPohangRepublic of Korea
  2. 2.Quality Control DepartmentPOSCO Gwangyang WorksGwangyangSouth Korea

Personalised recommendations