Skip to main content
Log in

Chemically Induced Phase Transformation in Austenite by Focused Ion Beam

  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

A highly stable austenite phase in a super duplex stainless steel was subjected to a combination of different gallium ion doses at different acceleration voltages. It was shown that contrary to what is expected, an austenite to ferrite phase transformation occurred within the focused ion beam (FIB) milled regions. Chemical analysis of the FIB milled region proved that the gallium implantation preceded the FIB milling. High resolution electron backscatter diffraction analysis also showed that the phase transformation was not followed by the typical shear and plastic deformation expected from the martensitic transformation. On the basis of these observations, it was concluded that the change in the chemical composition of the austenite and the local increase in gallium, which is a ferrite stabilizer, results in the local selective transformation of austenite to ferrite.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Abbreviations

A(001):

Austenitic grain having the (001) plane normal oriented parallel to the normal of the sample’s surface

A(111):

Austenitic grain having the (111) plane normal oriented parallel to the normal of the sample’s surface

ASS:

Austenitic stainless steel

BCC:

Body-centered cubic

CI:

Confidence index

DSS:

Duplex stainless steel

EBSD:

Electron backscatter diffraction

EDS:

Energy dispersive X-ray spectroscopy

FCC:

Faced-centered cubic

FIB:

Focused ion beam

IPF:

Inverse pole figure

IQ:

Image quality

K–S:

Kurdjumov–Sachs relation

MSS:

Maraging sandvik steel

M s :

Martensitic transformation temperature

N–W:

Nishiyama–Wasserman relation

OGM:

Orientation gradient mapping

sASS:

Super austenitic stainless steel

SEM:

Scanning electron microscopy

SDSS:

Super duplex stainless steel

SRIM:

Stopping and range of ions in matter

TEM:

Transmission electron microscopy

TRIP:

Transformation-induced plasticity

α :

Ferrite

ϒ:

Austenite

References

  1. G.B. Olson and M. Azrin: Metall. Trans. A, 1978, vol. 9, pp. 713-21.

    Article  Google Scholar 

  2. O. Grässel, L. Krüger, G. Frommeyer and L.W. Meyer: Int. J. Plasticity, 2000, vol. 16, pp. 1391-409.

    Article  Google Scholar 

  3. S.D. Antolovich and B. Singh: Metall. Trans. B, 1971, vol. 2, pp. 2135-41.

    Article  Google Scholar 

  4. H.F.G. Abreu, S.S. Carvalho, P. Lima Neto, R.P. Santos, V.N. Freire, P.M. Oliveira Silva and S.S.M. Tavares: Mater. Res., 2007, vol. 10, pp. 359-66.

    Article  Google Scholar 

  5. G. Baudry and A. Pineau: Mater. Sci. Eng., 1977, vol. 28, pp. 229-42.

    Article  Google Scholar 

  6. K. Sato, M. Ichinose, Y. Hirotsu and Y. Inoue: ISIJ Int., 1989, vol. 29, pp. 868-77.

    Article  Google Scholar 

  7. D.C. Larbalestier and H.W. King: Cryogenics, 1973, vol. 13, pp. 160-68.

    Article  Google Scholar 

  8. L.A.A. Warnes and H.W. King: Cryogenics, 1976, vol. 16, pp. 659-67.

    Article  Google Scholar 

  9. K.H. Lo and J.K.L. Lai: J. Magn. Magn. Mater., 2010, vol. 322, pp. 2335-39.

    Article  Google Scholar 

  10. H.W. Pickering: Physical metallurgy and the design of steels, Applied Science Publishers, London, 1978, pp. 228.

    Google Scholar 

  11. F.C. Monkman, F.B. Cuff and N.J. Grant: Met. Prog., 1957, vol. 71, p. 94.

    Google Scholar 

  12. G.H. Eichelman and F.C. Hull: Trans. Am. Soc. Met., 1953, vol. 45, p. 77.

    Google Scholar 

  13. K.W. Andrews: J. Iron Steel Inst., 1965, vol. 203, p. 721.

    Google Scholar 

  14. K. Spencer, J.D. Embury, K.T. Conlon, M. Véron and Y. Bréchet: Mater. Sci. Eng. A, 2004, vol. 387–389, pp. 873-81.

    Article  Google Scholar 

  15. N. Hayashi, I. Sakamoto, E. Johnson, L. Graabak, P. Børgesen and B.M.U. Scherzer: Hyperfine Interact., 1988, vol. 42, pp. 989-92.

    Article  Google Scholar 

  16. N. Hayashi, I. Sakamoto and T. Takahashi: J. Nucl. Mater., 1984, vol. 128–129, pp. 756-59.

    Article  Google Scholar 

  17. N. Hayashi and T. Takahashi: Appl. Phys. Lett., 1982, vol. 41, pp. 1100-01.

    Article  Google Scholar 

  18. E. Johnson, A. Johansen, L. Sarholt-Kristensen, L. Graab1k, N. Hayashi and I. Sakamoto: Nucl. Instrum. Meth. B, 1987, vol. 1920, pp. 171–76.

    Article  Google Scholar 

  19. E. Johnson, A. Johansen, L. Sarholt-Kristensen, H. Roy-Poulsen and A. Christiansen: Nucl. Instrum. Meth. B, 1985, vol. 7–8, pp. 212-18.

    Article  Google Scholar 

  20. R.G. Vardiman and I.L. Singer: Mater. Lett., 1983, vol. 2, pp. 150-54.

    Article  Google Scholar 

  21. A. Barnoush, J. Dake, N. Kheradmand and H. Vehoff: Intermetallics, 2010, vol. 18, pp. 1385-89.

    Article  Google Scholar 

  22. N. Kheradmand, A. Barnoush, and H. Vehoff: J. Phys. Conf. Ser., 2010, vol. 240, 3216–30.

    Article  Google Scholar 

  23. C.A. Volkert and A.M. Minor: MRS Bull., 2007, vol. 32, pp. 389-99.

    Article  Google Scholar 

  24. M.D. Uchic and D.M. Dimiduk: Mater. Sci. Eng., A, 2005, vol. 400-401, pp. 268-78.

    Article  Google Scholar 

  25. D. Raabe, S. Zaefferer, P. Konijnenberg, E. Demir, A. Khorashadizadeh, and N. Zaafarani: E-MRS Spring Meeting, Strasbourg, France, 2010.

  26. S. Zaefferer, S.I. Wright and D. Raabe: Metall. Mater. Trans. A, 2008, vol. 39, pp. 374-89.

    Article  Google Scholar 

  27. C. Holzapfel, W. Schäf, M. Marx, H. Vehoff and F. Mücklich: Scipta. Mater., 2007, vol. 56, pp. 697-700.

    Article  Google Scholar 

  28. W. Schaef, M. Marx, H. Vehoff, A. Heckl and P. Randelzhofer: Acta Mater., 2011, vol. 59, pp. 1849-61.

    Article  Google Scholar 

  29. S. Lozano-Perez: Micron, 2008, vol. 39, pp. 320-28.

    Article  Google Scholar 

  30. S. Kuwano, T. Fujita, D. Pan, K. Wang and M. Chen: Mater. Trans., 2008, vol. 49, pp. 2091-95.

    Article  Google Scholar 

  31. K.E. Knipling, D.J. Rowenhorst, R.W. Fonda and G. Spanos: Mater. Charact., 2010, vol. 61, pp. 1-6.

    Article  Google Scholar 

  32. A. Barnoush, M. Zamanzade and H. Vehoff: Scripta Mater., 2010, vol. 62, pp. 242-45.

    Article  Google Scholar 

  33. A. Barnoush and H. Vehoff: Scripta Mater., 2006, vol. 55, pp. 195-98.

    Article  Google Scholar 

  34. M. Henning and H. Vehoff: Acta Mater., 2005, vol. 53, pp. 1285-92.

    Article  Google Scholar 

  35. Z. Nishiyama: Sci. Rep. Tohoku, 1934, vol. 23, pp. 637-64.

    Google Scholar 

  36. G.V. Kurdjumov and G. Sachs: Z. Phys., 1930, vol. 64, pp. 325-43.

    Article  Google Scholar 

  37. N. Kheradmand and H. Vehoff: Adv. Eng. Mater., 2012, vol. 14, pp. 153-61.

    Article  Google Scholar 

  38. P.J. Potts: A handbook of silicate rock analysis, Blackie, Glasgow and London, 1987, pp. 336-37.

    Book  Google Scholar 

  39. K. Kanaya and S. Okayama: J. Phys. D. Appl. Phys., 1972, vol. 5, pp. 43–58.

    Article  Google Scholar 

  40. J.F. Ziegler, M.D. Ziegler and J.P. Biersack: Nucl. Instrum. Meth. B, 2010, vol. 268, pp. 1818-23.

    Article  Google Scholar 

  41. C. Capdevila, F.G. Caballero and C. Garcia de Andres: ISIJ Int., 2002, vol. 42, pp. 894-902.

    Article  Google Scholar 

  42. Q.X. Dai, X.N. Cheng, Y.T. Zhao, X.M. Luo and Z.Z. Yuan: Mater. Charact., 2004, vol. 52, pp. 349-54.

    Article  Google Scholar 

  43. K. Ishida: J. Alloy Compd., 1995, vol. 220, pp. 126-31.

    Article  Google Scholar 

  44. E.R. Jones Jr, T. Datta, C. Almasan, D. Edwards and H.M. Ledbetter: Mater. Sci. Eng., 1987, vol. 91, pp. 181-88.

    Article  Google Scholar 

  45. S.S.M. Tavares, M.R. da Silva, J.M. Pardal, H.F.G. Abreu and A.M. Gomes: J. Mater. Process. Tech., 2006, vol. 180, pp. 318-22.

    Article  Google Scholar 

  46. R. Naraghi, P. Hedström and A. Borgenstam: Steel Res. Int., 2011, vol. 82, pp. 337-45.

    Article  Google Scholar 

  47. H. Sato and S. Zaefferer: Acta Mater., 2009, vol. 57, pp. 1931-37.

    Article  Google Scholar 

  48. M. Calcagnotto, D. Ponge, E. Demir and D. Raabe: Mater. Sci. Eng. A, 2010, vol. 527, pp. 2738-46.

    Article  Google Scholar 

  49. M. Karlsen, Ø. Grong, M. Søfferud, J. Hjelen, G. Rørvik and R. Chiron: Metall. Mater. Trans. A, 2009, vol. 40, pp. 310-20.

    Article  Google Scholar 

  50. M. Calcagnotto, D. Ponge and D. Raabe: Metall. Mater. Trans. A, 2012, vol. 43, pp. 37-46.

    Article  Google Scholar 

  51. D.G. Kolman, J.F. Bingert and R.D. Field: Metall. Mater. Trans. A, 2004, vol. 35, pp. 3445-54.

    Article  Google Scholar 

Download references

Acknowledgments

The authors would like to acknowledge the Research Council of Norway for providing financial support through the PETROMAKS program. Special thanks are due to SINTEF Materials and Chemistry Department in Trondheim, Norway for providing the SDSS material studied in this paper. The first author would also like to thank Dr. Nousha Kheradmand for fruitful discussion regarding the OGM method.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Afrooz Barnoush.

Additional information

Manuscript submitted March 11, 2013.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Basa, A., Thaulow, C. & Barnoush, A. Chemically Induced Phase Transformation in Austenite by Focused Ion Beam. Metall Mater Trans A 45, 1189–1198 (2014). https://doi.org/10.1007/s11661-013-2101-4

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-013-2101-4

Keywords

Navigation