Skip to main content
Log in

EBSD and DTA Characterization of A356 Alloy Deformed by ECAP During Reheating and Partial Re-melting

  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

Recrystallization and partial re-melting processes have been developed for producing semi-solid feedstock in a solid state in which a globular microstructure is obtained by plastic deformation followed by reheating. In this research, to induce strain, a cast- and solution-treated Aluminum A356 (7 wt pct Si) alloy was subjected to a repetitive equal channel angular pressing process using a 90 deg die, up to a total accumulated strain of approximately 8 in route A (increasing strain through a sequence of passes with no rotation of the sample after each pass) at ambient temperature. The microstructural evolutions of deformed and reheated materials were studied by optical microscopy, scanning electron microscopy, and electron back-scattered diffraction analysis. In addition, the influences of pre-deformation on the recrystallization mechanism and liquid formation of A356 alloy were presented and discussed. The results are also supported by differential thermal analysis experiments. Evaluation of the observations indicated that the average cell boundary misorientation increased with increasing strain, so this increased misorientation accelerated the mobility of boundaries and recrystallization kinetics. Therefore, the recrystallization mechanism and kinetics affected by deformation, reheating condition, and intrinsic material properties determined the particle size in the semi-solid state.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. M.C. Flemings: Metall. Trans. A, 1991, vol. 22, pp. 957-981.

    Article  Google Scholar 

  2. Z. Fan: Int. Mater. Rev., 2002, vol. 47, no. 2, pp. 49-85.

    Article  Google Scholar 

  3. Y. Birol: J. Alloys Compd., 2009, vol. 473 (1–2), pp. 133–38.

  4. J.G. Wang, H.Q. Lin, Y.Q. Li and Q.C. Jiang: J. Alloys Compd., 2008, vol. 457, pp. 251-258.

    Article  Google Scholar 

  5. K. Lee, Y. N. Kwon and S. Lee: J. Alloys Compd., 2008, vol. 461, pp. 532-541.

    Article  Google Scholar 

  6. J. C. Choi and H. J. Park: Mater. Process. Technol., 1998, vol. 82, pp. 107-116.

    Article  Google Scholar 

  7. W. Lapkowski: Mater. Process. Technol., 1998, vols. 80-81, pp. 463-468.

    Article  Google Scholar 

  8. H. V. Atkinson: Prog. Mater Sci., 2005, vol. 50, pp. 341-412.

    Article  Google Scholar 

  9. R.D. Doherty, K. Kashyap and S. Panchanadeeswaran: Acta Metall. Mater., 1993, vol. 41, pp. 3029-3053.

    Article  Google Scholar 

  10. E. Tzimas and A. Zavaliangos: Mater. Sci. Eng. A, 2000, vol. 289, pp. 217-227.

    Article  Google Scholar 

  11. N. Saklakoglu, I. E. Saklakoglu, M. Tanoglu, O. Oztas and O. Cubukcuoglu: J. Mater. Process. Technol., 2004, vol. 148, pp. 103-107.

    Article  Google Scholar 

  12. X. Ming-Xu, Z. Hong-Xing, Y. Sen and L. Jian-Guo: Mater. Des., 2005, vol. 26, pp. 343-349 .

    Article  Google Scholar 

  13. H.Q. Lin, J. G. Wang, H.Y. Wang and Q.C. Jiang: J. Alloys Compd., 2007, vol. 431, pp. 141-147.

    Article  Google Scholar 

  14. Y. Sirong, L. Dongcheng and N. Kim: Mater. Sci. Eng. A, 2006, vol. 420, pp. 165-170.

    Article  Google Scholar 

  15. L. Sang, L. Jung and L. Young: J. Mater. Process. Technol., 2001, vol. 111, pp. 42-47.

    Article  Google Scholar 

  16. A. M. Kliauga and M. Ferrante: Acta Metall. Mater., 2005, vol. 53, pp. 345-356.

    Article  Google Scholar 

  17. H. V. Atkinson, K. Burke and G. Vaneetveld: Mater. Sci. Eng. A, 2008, vol. 490, pp. 266-276.

    Article  Google Scholar 

  18. J. Jiang, Y. Wang and S. Luo: Mater. Charact., 2007, vol. 58, pp. 190-196.

    Article  Google Scholar 

  19. J. Jiang and S. Luo: Trans. Nonferrous Met. Soc. China, 2007, vol. 17, pp. 46-50.

    Article  Google Scholar 

  20. T.J. Chen, G.X. Lu, Y. Ma, Y.D. Li and Y. Hao: J. Alloys Compd., 2009, vol. 486, pp. 124-135.

    Article  Google Scholar 

  21. V.M. Segal: Mater. Sci. Eng. A, 1995, vol. 197, pp. 157-64.

    Article  Google Scholar 

  22. TG. Langdon: Mater. Sci. Eng. A, 2007, vol. 462, pp. 3-11.

    Article  Google Scholar 

  23. S. Mahesh, I. Beyerlein and C. Tome: Scripta Mater., 2005, vol. 53, pp. 965-969.

    Article  Google Scholar 

  24. H. Conra and K. Jung: Scripta Mater., 2005, vol. 53, pp. 581-584.

    Article  Google Scholar 

  25. M. Haouaoui, K. Hartwig and E. Payzant: Acta Metall. Mater., 2005, vol. 53, pp. 801-810.

    Article  Google Scholar 

  26. S. Ashouri, M. Nili- Ahmadabadi, M. Moradi and M. Iranpour: J. Alloys Compd., 2008, vol. 466, pp. 67-72.

    Article  Google Scholar 

  27. M. Moradi, M. Nili-Ahmadabadi, B. Heidarian and S. Ashouri: J. Alloys Compd., 2009, vol. 487, pp. 768-775.

    Article  Google Scholar 

  28. M. Moradi, M. Nili-Ahmadabadi, B. Poorganji, B. Heidarian, M. H. Parsa and T. Furuhara: Mater. Sci. Eng. A, 2010, vol. 527, pp. 4113-4121.

    Article  Google Scholar 

  29. M. Moradi, B. Heidarian and M. Nili-Ahmadabadi: Int. J. Mater. Form., 2009, vol. 2, pp. 85-88.

    Article  Google Scholar 

  30. P. K. Seo and C. G. Kang: J. Mater. Process. Technol., 2005, vols.162-163, pp. 402-409.

    Article  Google Scholar 

  31. J. C. Zhao: Methods for phase diagram determination, 2007, First Edition, Elsevier.

    Google Scholar 

  32. F.J. Humphreys and M. Hatherly: Recrystallization and Related Annealing Phenomena, 2004, 2nd Edition, Elsevier, New York, NY.

    Google Scholar 

  33. P. J. Hurley, F. J. Humphreys and M. Ferry: Acta Metall. Mater., 2000, vol. 48, pp. 2543-2556.

    Article  Google Scholar 

  34. S.S. Gorelik: Recrystallization in Metals and Alloys, 1981, Mir publishers, Moscow.

    Google Scholar 

  35. A. Lima and F. K Kowata: Proceeding of 8th International Conference on Semi-Solid Processing of Alloys and Composites, Cyprus, 2004.

  36. H.V. Atkinson and D. Liu: Mater. Sci. Eng. A, 2008, vol. 496, pp. 439-446.

    Article  Google Scholar 

  37. P. Babaghorbani, S. Salarfar and M. Nili-Ahmadabadi: Solid state phenom., 2006, vols. 116-117, pp. 201-205.

    Google Scholar 

  38. ASM Metals Handbook, Casting, 9 ed, vol. 15, pp. 56–57.

  39. P. Suwanpinij, U. Kitkamthorn2, I. Diewwanit and T. Umeda: Mater. Trans., 2003, vol. 44, pp. 845-852.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mahmoud Nili-Ahmadabadi.

Additional information

Manuscript submitted May 18, 2010.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Moradi, M., Nili-Ahmadabadi, M., Poorganji, B. et al. EBSD and DTA Characterization of A356 Alloy Deformed by ECAP During Reheating and Partial Re-melting. Metall Mater Trans A 45, 1540–1551 (2014). https://doi.org/10.1007/s11661-013-2093-0

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-013-2093-0

Keywords

Navigation