Skip to main content

Advertisement

Log in

Pretension-Dependent Residual Stress of Alumina Fiber-Reinforced Composite Wire

  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

The relationship between pretension and residual stress of an aluminum wire reinforced with 45 vol pct continuous Nextel™ 610 alumina fibers is investigated. It is shown that as pretension stress increases, the matrix residual stress decreases. A transition in matrix residual stress from tension to compression occurs at a pretension stress of about 80 MPa. The initial rapidly decreased residual stress caused by pretension at relatively low pretension stresses is a result of matrix elastic compressive deformation; while the later gradually decreased residual stress at higher pretension stresses comes from matrix plastic compressive deformation. As the matrix yield stress and hardening exponent increase, the decrease in matrix residual stress with pretension stress is more rapid and the absolute value of matrix residual stress increases. An analytical model suitable for fiber-reinforced metal matrix composites (MMCs) with strong interfacial bonding is developed to describe the relationship between pretension and matrix residual stress and is shown to be in good agreement with the experimental and finite-element calculated results. The pretension-dependent matrix residual stress phenomenon suggests that the mechanical properties of fiber-reinforced MMCs associated with matrix residual stress may be effectively improved by applying tensile loads.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. H. E. Deve, and C. McCullough: JOM, 1995, vol. 47(7), pp. 33-37.

    Article  Google Scholar 

  2. I. Kientzl, and J. Dobranszky : Mater Sci Forum, 2007, vol. 537-538, pp. 191-197.

    Article  Google Scholar 

  3. D.J. Johnson, T.L. Anderson, and H.E. Deve: Power Engineering Society Summer Meeting, Vancouver, BC, 2001, vol. 1, pp. 175–79.

  4. H.E. Deve, R. Clark, J. Stovall, S. Barrett, R. Whapham, and W. Uesnel: CIGRE Session, Paris, France, 2006, pp. B2–314, unpublished.

  5. H.A. Samms: Electrical Transmission and Substation Structures Conference (ASCE), Fort Worth, Texas, US, 2009, pp. 1–10.

  6. J. X. Zhang, Y. X. Pan, Z.W. You, and Q.Q. Ma: East China Electric Power, 2010, vol. 38(7), pp. 1026-1027.

    Google Scholar 

  7. W.L. Zhang, M.Y. Gu, J.Y. Chen, A.G. Wu, F. Zhang, and H.E. Deve: Mater Sci Eng, 2003, vol. A341, pp. 9-17.

    Article  Google Scholar 

  8. U. Ramamurty, F.W. Zok, F.A. Leckie, and H.E. Deve: Acta Mater, 1997, vol. 45(11), pp. 4603- 4613.

    Article  Google Scholar 

  9. C. McCullough, H.E. Deve, and T.E. Channel: Mater. Sci. Eng., 1994, vol. A189(12), pp. 147–54.

    Article  Google Scholar 

  10. L. Weber, P. Canalis-Nieto, A. Rossoll, and A. Mortensen: Acta Mater, 2000, vol. 48(12), pp. 3235-3244.

    Article  Google Scholar 

  11. R.J. Arsenault, and M. Taya: Acta Metall, 1987, vol. 35(3), pp. 651-659.

    Article  Google Scholar 

  12. K.G. Dassios, D.G. Aggelis, E.A. Kordatos, and T.E. Matikas: Composites Part A, 2013, vol. 44, pp. 105-113.

    Article  Google Scholar 

  13. Z. Zhang, and D.L. Chen: Scripta Mater, 2006, vol. 54, pp. 1321-1326.

    Article  Google Scholar 

  14. M.M. Aghdam, and A. Khojeh: Compos Struct, 2003, vol. 62(3-4), pp. 285-290.

    Article  Google Scholar 

  15. G. Meijer, F. Ellyin, and Z. Xia: Composites Part B, 2000, vol. 31(1), pp. 29-37.

    Article  Google Scholar 

  16. M.R. James: Third International Conference on Residual Stress, Tokushima, Japan, 1991, pp. 555–60.

  17. C. Liu, F. Zhang, G.D. Zhang, and N. Masaki: J Mater Sci, 2004, vol. 39(8), pp. 2923-2925.

    Article  Google Scholar 

  18. Y. Ward, R.J. Young, and R.A. Shatwell: Composites Part A, 2002, vol. 33(10), pp. 1409-1416.

    Article  Google Scholar 

  19. P. Bystricky, and H. Bjerregard: Metall Mater Trans, 1999, vol. A30(7), pp.1843-1865.

    Article  Google Scholar 

  20. E.R. Olivasa, J.G. Swadener, and Y.L. Shen: Scripta Mater, 2006, vol. 54(2): 263-268.

    Article  Google Scholar 

  21. F. Bouafiaa, B. Seriera, and B.A.B. Bouiadjra: Comput Mater Sci, 2012, vol. 54, pp. 195-203.

    Article  Google Scholar 

  22. H. Choo, M.A.M. Bourke, and M.R. Daymond: Compos Sci Technol, 2001, vol. 61(12), pp. 1757-1772.

    Article  Google Scholar 

  23. W.L. Zhang, D.Y. Ding, M.Y. Gu: Mater Sci Eng, 2010, vol. 527A(26), pp. 7109–14.

    Article  Google Scholar 

  24. W. Zhang, S. Li, and S.R. Nutt: J Mater Sci Technol, 2009, vol. 25(2), pp. 281-288.

    Google Scholar 

  25. A. Roatta, and R.E. Bolmaro: Mater Sci Eng, 1997, vol. 229(1-2), pp.182-191.

    Article  Google Scholar 

  26. H.Y. Zhang, P.M. Anderson, and G.S. Daehn: Metall. Mater. Trans. A, 1994, vol. 25A, pp. 415–25.

    Article  Google Scholar 

  27. H. Li, J.B. Li, L.Z. Sun, and Z.G. Wang: Compos Sci Technol, 1997, vol. 57(2), pp. 165-172.

    Article  Google Scholar 

  28. H. Li, D.Z. Wang, J.B. Li, Z.G. Wang, and C.R. Chen: Metall. Mater. Trans. A, 1998, vol. 29A, pp. 2001–09.

    Article  Google Scholar 

  29. N. Shi, R.J. Arsenault, A.D. Krawitz, and L.F. Smith: Metall. Trans. A, 1993, vol. 24A, pp. 187-196.

    Article  Google Scholar 

  30. R. Hill: J Mech Phys Solids, 1964, vol. 12, pp. 199-212.

    Article  Google Scholar 

  31. R. Hill: J Mech Phys Solids, 1964, vol. 12, pp. 213-218.

    Article  Google Scholar 

  32. B. Moser, A. Rossoll, L. Weber, O. Beffort, and A. Mortensen: Composite Part A, 2001, vol. 32(8): 1067-1075.

    Article  Google Scholar 

  33. R.Q. Ye, B.Q. Han, and E.J. Lavernia: Metall Mater Trans, 2005, vol. 36A, pp. 1833-1840.

    Article  Google Scholar 

  34. 3M: Nextel™ Ceramic Fiber Technical Notebook, 3M Ceramic Fiber Products, 3M Center, St Paul, MN, 1997.

  35. Z.T. Wang, and R.Z. Tian: Handbook of aluminum alloy and processing, Press of Central South University of Technology, Changsha, 1989.

    Google Scholar 

Download references

Acknowledgments

The authors would like to acknowledge the financial support of the National Natural Science Foundation (Nos. 51171108, 51071100, 51131004), the National Basic Research Program (973 Program) (No. 2012CB619600), the National High-Tech R&D Program (863 Program) (No. 2012AA030311), and Shanghai Science & Technology Committee (No. 11JC1405500). The authors are grateful for the supply of the composite wires by 3M (St. Paul, MN).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wenlong Zhang.

Additional information

Manuscript submitted July 23, 2013.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dai, X., Zhang, W., Gao, P. et al. Pretension-Dependent Residual Stress of Alumina Fiber-Reinforced Composite Wire. Metall Mater Trans A 45, 1559–1566 (2014). https://doi.org/10.1007/s11661-013-2087-y

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-013-2087-y

Keywords

Navigation