Skip to main content
Log in

On the Failure Behavior of Highly Cold Worked Low Carbon Steel Resistance Spot Welds

  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

Highly cold worked (HCW) low carbon steel sheets with cellular structure in the range of 200 to 300 nm are fabricated via constrained groove pressing process. Joining of the sheets is carried out by resistance spot welding process at different welding currents and times. Thereafter, failure behavior of these welded samples during tensile-shear test is investigated. Considered concepts include; failure load, fusion zone size, failure mode, ultimate shear stress, failure absorbed energy, and fracture surface. The results show that HCW low carbon steel spot welds have higher failure peak load with respect to the as-received one at different welding currents and times. Also, current limits for failure mode transition from interfacial to pullout or from pullout to tearing are reduced for HCW samples. Fusion zone size is the main geometrical factor which affects the failure load variations. Ultimate shear stress of spot welds is increased with decreasing the heat input and for HCW samples at a specific welding current and time, it is lower than that of the as-received ones. Before pullout mode, failure absorbed energy (FAE) for HCW low carbon steel spot welds is higher than that of the as-received one, but after failure mode transition, trend would be vice versa and FAE of the as-received spot welds is extremely higher (about 3 times). In addition, spot welds fracture surface (in interfacial failure mode) for HCW sample is more dimpled which indicates higher energy absorption than that of the as-received one.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

References

  1. J.W. Lee and J.J. Park: J. Mater. Process. Technol., 2002, vol. 130–131, pp. 208-213.

    Article  Google Scholar 

  2. D.H. Shin, J.J. Park, Y.S. Kim, and K.T. Park: Mater. Sci. Eng., A, 2002, vol. 328, pp. 98-103.

    Article  Google Scholar 

  3. A. Krishnaiah, U. Chakkingal, and P. Venugopal: Mater. Sci. Eng., A, 2005, vol. 410–411, pp. 337-340.

    Article  Google Scholar 

  4. A. Krishnaiah, U. Chakkingal, and P. Venugopal: Scripta Materialia, 2005, vol. 52, pp. 1229-1233.

    Article  Google Scholar 

  5. S.C. Yoon, A. Krishnaiah, U. Chakkingal, and H.S. Kim: Comput. Mater. Sci., 2008, vol. 43, pp. 641-645.

    Article  Google Scholar 

  6. F. Khodabakhshi and M. Kazeminezhad: Mater. Des., 2011, vol. 32, pp. 3280-3286.

    Article  Google Scholar 

  7. F. Khodabakhshi, M. Kazeminezhad, and A.H. Kokabi: Mater. Sci. Eng., A, 2010, vol. 527, pp. 4043-4049.

    Article  Google Scholar 

  8. F. Khodabakhshi and M. Kazeminezhad: Mater. Sci. Eng., A, 2011, vol. 528, pp. 5212-5218.

    Article  Google Scholar 

  9. P. Marashi, M. Pouranvari, S. Amirabdollahian, A. Abedi, and M. Goodarzi: Mater. Sci. Eng., A, 2008, vol. 480, pp. 175-180.

    Article  Google Scholar 

  10. M. Pouranvari: Mater. Sci. Eng., A, 2012, vol. 546, pp. 129-138.

    Article  Google Scholar 

  11. M. Pouranvari and S.P.H. Marashi: Mater. Des., 2010, vol. 31, pp. 3647-3652.

    Article  Google Scholar 

  12. Miller-Handbook for Resistance Spot Welding, 06, 2012.

  13. Ruukki-Resistance Welding Manual, 11, 2013.

  14. F. Khodabakhshi, M. Kazeminezhad, and A.H. Kokabi: Mater. Sci. Eng., A, 2011, vol. 529, pp. 237-245.

    Article  Google Scholar 

  15. F. Khodabakhshi, M. Kazeminezhad, and A.H. Kokabi: Mater. Charact., 2012, vol. 69, pp. 71-83.

    Article  Google Scholar 

  16. S.H. Lin, J. Pan, T. Tyan, and P. Prasad: Int. J. Solids Struct., 2003, vol. 40, pp. 5539-5564.

    Article  Google Scholar 

  17. M. Pouranvari, H.R. Asgari, S.M. Mosavizadeh, P.H. Marashi, and M. Goodarzi: Sci. Technol. Weld. Joining, 2007, vol. 12, pp. 217-225.

    Article  Google Scholar 

  18. P. Marashi, M. Pouranvari, S.M.H. Sanaee, A. Abedi, S.H. Abootalebi, and M. Goodarzi: Mater. Sci. Technol., 2008, vol. 24, pp. 1506-1512.

    Article  Google Scholar 

  19. X. Sun, E.V. Stephens, and M.A. Khaleel: Eng. Fail. Anal., 2008, vol. 15, pp. 356-367.

    Article  Google Scholar 

  20. W. Tao, L.Q. Li, Y.B. Chen, and L. Wu: Sci. Technol. Weld. Joining, 2008, vol. 13, pp. 754-759.

    Article  Google Scholar 

  21. M. Carboni and M. Annoni: Sci. Technol. Weld. Joining, 2011, vol. 16, pp. 116-125.

    Article  Google Scholar 

  22. M. Pouranvari, S.P.H. Marashi, and D.S. Safanama: Mater. Sci. Eng., A, 2011, vol. 528, pp. 8344-8352.

    Article  Google Scholar 

  23. M. Pouranvari, S.M. Mousavizadeh, S.P.H. Marashi, M. Goodarzi, and M. Ghorbani: Mater. Des., 2011, vol. 32, pp. 1390-1398.

    Article  Google Scholar 

  24. D.S. Safanama, S.P.H. Marashi, and M. Pouranvari: Sci. Technol. Weld. Joining, 2012, vol. 17, pp. 288-294.

    Article  Google Scholar 

  25. A. Shirdel, A. Khajeh, and M.M. Moshksar: Mater. Des., 2010, vol. 31, pp. 946-950.

    Article  Google Scholar 

  26. S. Morattab, K. Ranjbar, and M. Reihanian: Mater. Sci. Eng., A, 2011, vol. 528, pp. 6912-6918.

    Article  Google Scholar 

  27. F. Khakbaz and M. Kazeminezhad: J. Manuf. Processes, 2012, vol. 14, pp. 20-25.

    Article  Google Scholar 

  28. ASTM standard E8M: Tension Testing of Metallic Materials. Annual Book of ASTM Standards, ASTM, West Conshohocken, 1998.

  29. American Welding Society: ANSI/AWS/SAE/D8.9-99, Recommended Practices for Test Methods and Evaluation the Resistance Spot Welding Behavior of Automotive Sheet Steels, 1999.

  30. B.H. Chang, M.V. Li, and Y. Zhou: Sci. Technol. Weld. Joining, 2001, vol. 6, pp. 273-280.

    Article  Google Scholar 

  31. P. Podržaj, I. Polajnar, J. Diaci, and Z. Kari: Sci. Technol. Weld. Join., 2006, vol. 11, pp. 250–54.

  32. H.T. Sun, X.M. Lai, Y.S. Zhang, and J. Shen: Sci. Technol. Weld. Joining, 2007, vol. 12, pp. 718-724.

    Article  Google Scholar 

  33. A.N. Gerritsen and J.O. Linde: Physica, 1952, vol. 18, pp. 877-890.

    Article  Google Scholar 

  34. J.O. Linde: Physica, 1958, vol. 24(Supplement 1), pp. S109–S117.

  35. A. Vorobieva, A. Nikulin, A. Shikov, V. Pantsyrny, M. Polikarpova, N. Kozlenkova, E. Dergunova, E. Popova, and L. Rodionova: Physica C, 2001, vol. 354, pp. 371-374.

    Article  Google Scholar 

  36. J.E. Gould, S.P. Khurana, and T. Li: Welding Journal, 2006, vol. 86, pp. 111-116.

    Google Scholar 

  37. H. Zhang and J. Senkara: Resistance Welding: Fundamentals and Applications, Teylor & Francis, Boca Raton, 2006.

  38. M. Pouranvari and S.P.H. Marashi: Mater. Sci. Eng., A, 2011, vol. 528, pp. 8337-8343.

    Article  Google Scholar 

  39. M. Eizadjou, H.D. Manesh, and K. Janghorban: J. Alloys Compd., 2009, vol. 474, pp. 406-415.

    Article  Google Scholar 

Download references

Acknowledgments

The authors wish to thank the research board of Sharif University of Technology for the financial support and the provision of the research facilities used in this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Kazeminezhad.

Additional information

Manuscript submitted March 14, 2013.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Khodabakhshi, F., Kazeminezhad, M. & Kokabi, A.H. On the Failure Behavior of Highly Cold Worked Low Carbon Steel Resistance Spot Welds. Metall Mater Trans A 45, 1376–1389 (2014). https://doi.org/10.1007/s11661-013-2074-3

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-013-2074-3

Keywords

Navigation