Skip to main content
Log in

Characterizing Hardening on Annealing of Cold-Rolled Aluminum AA3103 Strips

  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

AA3103 aluminum strips were cold rolled to various von Mises strains up to 4.7. In addition, two severely deformed conditions were obtained by one and four cycles of cold accumulated roll bonding subsequent to cold rolling to a strain of 4.2. For cases of subsequent annealing at 498 K (225 °C) for 10 minutes, an increase in the ultimate tensile strength was observed at the rolling strains of 1.7 and higher. Similar hardening is observed for a wide range of temperature–time combinations for temperatures greater than 423 K (150 °C). The yield stress is also increased by a few per cent during further cold rolling. The magnitude of the increase in strength on annealing increased with the increasing strain. Electron backscattered diffraction and transmission electron microscopy studies showed no significant changes in the high- or low-angle grain boundary spacings by this annealing. A systematic investigation on the roles played by Si and Mn was made with different homogenization treatments of AA3103 and of an AlSi alloy. Based on tensile tests, and differential scanning calorimetry and electrical conductivity measurements, it is concluded that Mn plays a major role. The exact mechanisms causing hardening on annealing are not identified, but through elimination of other explanations, it is suggested that some sort of clustering or precipitation mechanism is involved.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

References

  1. Ø. Ryen, B. Holmedal, O. Nijs, E. Nes, E. Sjölander, and H.-E. Ekström: Metall. Mater. Trans. A, 2006, vol. 37, pp. 1999–2006.

    Article  Google Scholar 

  2. X. Huang, N. Hansen, and N. Tsuji: Science, 2006, vol. 312, pp. 249–51.

    Article  Google Scholar 

  3. X. Huang: Scripta Mater., 2009, vol. 60, pp. 1078–82.

    Article  Google Scholar 

  4. W. Zeng, Y. Shen, N. Zhang, X. Huang, J. Wang, G. Tang, and A. Shan: Scripta Mater., 2012, vol. 66, pp. 147–50.

    Article  Google Scholar 

  5. N. Kamikawa, X. Huang, N. Tsuji, and N. Hansen: Acta Mater., 2009, vol. 57, pp. 4198–4208.

    Article  Google Scholar 

  6. N.H. Lee, P.W. Kao, T.Y. Tseng, and J.R. Su: Mater. Sci. Eng. A, 2012, vol. 535, pp. 297–05.

    Article  Google Scholar 

  7. R. Shoji and C. Fujikura: Key Eng. Mater., 1990, vol. 44, 45, pp. 163–80.

  8. Q. Zhao, B. Holmedal, and Y. Li: Philos. Mag., 2013, vol. 93, pp. 2995–3011.

  9. D. Terada, H. Houda, and N. Tsuji: J. Mater. Sci., 2008, vol. 43, pp. 7331–37.

    Article  Google Scholar 

  10. W.C. Liu and B. Radhakrishnan: Mater. Lett., 2010, vol. 64, pp. 1829–32.

    Article  Google Scholar 

  11. J. Morris and W. Liu: J. Miner. Metals Mater. Soc., 2005, vol. 57, pp. 44–47.

    Article  Google Scholar 

  12. S. Tangen, K. Sjølstad, E. Nes, T. Furu, and K. Marthinsen: Mater. Sci. Forum 2002, vol. 396–402, pp. 469–74.

    Article  Google Scholar 

  13. Y.J. Li and L. Arnberg: Acta Mater., 2003, vol. 51, pp. 3415–28.

    Article  Google Scholar 

  14. Y. Du, Y.A. Chang, B. Huang, W. Gong, Z. Jin, H. Xu, Z. Yuan, Y. Liu, Y. He, and F.Y. Xie: Mater. Sci. Eng. A, 2003, vol. 363, pp. 140–51.

    Article  Google Scholar 

  15. B. Forbord, W. Lefebvre, F. Danoix, H. Hallem, and K. Marthinsen: Scripta Mater., 2004, vol. 51, pp. 333–37.

    Article  Google Scholar 

  16. G.A. Edwards, K. Stiller, G.L. Dunlop, and M.J. Couper: Acta Mater., 1998, vol. 46, pp. 3893–04.

    Article  Google Scholar 

  17. M.A. Kenawy, G. Graiss, G. Saad, and A. Fawzy: J. Phys. D Appl. Phys., 1987, vol. 20, p. 125–129.

    Article  Google Scholar 

  18. E. Clouet and A. Barbu: Acta Mater., 2007, vol. 55, pp. 391–400.

    Article  Google Scholar 

Download references

Acknowledgments

The current study was financed by the Norwegian Research Council under the Improvement project of the Strategic University Program (192450/I30).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nagaraj Vinayagam Govindaraj.

Additional information

Manuscript submitted March 17, 2013.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Govindaraj, N.V., Bjørge, R. & Holmedal, B. Characterizing Hardening on Annealing of Cold-Rolled Aluminum AA3103 Strips. Metall Mater Trans A 45, 1597–1608 (2014). https://doi.org/10.1007/s11661-013-2064-5

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-013-2064-5

Keywords

Navigation