Skip to main content
Log in

The Effect of Zr Incorporation Caused by Ball Abrasion in a Milled Fe-Y2O3 Model Alloy

  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

Y-O nanoparticles which are homogeneously distributed in the matrix can improve the thermal properties of steels. Several studies of mechanically alloyed steels showed that especially Y-Ti-O particles can cause a further improvement of the mechanical properties at elevated temperatures. It is also assumed that an addition of Zr instead of Ti may have a similar or even stronger effect. This study presents a new way of producing nanostructured ferritic alloys as Zr is incorporated by attrition of yttrium-stabilized zirconia balls during milling. Additionally, the effect of Zr incorporation is demonstrated as well as the particle size distribution of the Y-Zr-O nanoparticles analyzed by transmission electron microscopy. This is compared to a specimen milled with common steel balls. Atom probe tomography and transmission electron microscopy show that the incorporated zirconia lowers the minimum particle size and causes a finer particle distribution. This particle refinement causes a higher hardness after hipping.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. G. R. Odette, M. J. Alinger, and B. D. Wirth: Annu. Rev. Mater. Res., 2008, vol. 38, pp. 471-503.

    Article  Google Scholar 

  2. M. K. Miller, D. T. Hoelzer, E. A. Kenik, and K. F. Russell: J. Nucl. Mater. 2004, vol. 329-333, pp. 338-341.

    Article  Google Scholar 

  3. M. K. Miller, D. Hoelzer, E. Kenik, and K. Russell: Intermet., 2005, vol. 13, pp. 387-392.

    Google Scholar 

  4. C. A. Williams, E. A. Marquis, A. Cerezo, and G. D. W. Smith: J. Nucl. Mater., 2010, vol. 400, pp. 37-45.

    Article  Google Scholar 

  5. C. A. Williams, P. Unifantowicz, N. Baluc, G. D. W. Smith, and E. A. Marquis: Acta Mater., 2013, vol. 61, pp. 2219-2235.

    Article  Google Scholar 

  6. G. Ressel, S. Primig, and H. Leitner: Int. J. Mater. Res. DOI:10.3139/146.110964.

  7. S. Ukai, T. Nishida, T. Okuda, and T. Yoshitake: J. Mater. Sci. Technol., 1998, vol. 35, pp. 294-300.

    Google Scholar 

  8. S. Ukai, T. Nishida, H. Okada, T. Okuda, M. Fujiwara, and K. Asabe: J. Nucl. Sci. Technol., 1997, vol. 34, pp. 256-263.

    Article  Google Scholar 

  9. M. Klimiankou: J. Nucl. Mater., 2004, vol. 329-333, pp. 347-351.

    Article  Google Scholar 

  10. A. Hirata, T. Fujita, Y. R. Wen, J. H. Schneibel, C. T. Liu, and M. W. Chen: Nat. Mater., 2011, vol. 10, no.12, pp. 922-926.

    Article  Google Scholar 

  11. S. Nomura, T. Okuda, S. Shikakura, M. Fujiwara, and K. Asabe: Solid State Powder Processing, Metals & Materials Society, Indianapolis, 1989, pp. 203–211.

    Google Scholar 

  12. Y. Uchida, N. Ohnuki, N. Hashimoto, T. Suda, T. Nagai, T. Shibayama, K. Hamada, S. Akasaka, S. Yamashita, S. Ohstuka, and T. Yoshitake: Mater.Res.Soc.Symp.Proc., 2007, vol. 981, pp. 107-112.

    Google Scholar 

  13. P. Unifantowicz, R. Schäublin, C. Hebert, T. Plocinski, G. Lucas, and N. Baluc: J. Nucl. Mater., 2012, vol. 422, pp. 131-136.

    Article  Google Scholar 

  14. D. Larson: Scripta Mater., 2001, vol. 44, pp. 359-364.

    Article  Google Scholar 

  15. M. K. Miller, E. Kenik, K. Russell, L. Heatherly, D. Hoelzer, and P. Maziasz: Mater. Sci. Eng. A, 2003, vol. 353, pp. 140-145.

    Article  Google Scholar 

  16. M.K. Miller, A. Cerezo, M.G. Hetherington, and G.D. W. Smith: Atom Probe Field Ion Microscopy, Clarendon Press, Oxford, 1996, pp. 476–438.

    Google Scholar 

  17. H.J. Penkalla: Proc. 1st Summer Sch. Adv. Electron Microsc., A. Czyrska-Filemonowicz and B. Dubiel, eds., 2003, pp. 4–23.

  18. L. T. Stephenson, M. P. Moody, P. V. Liddicoat, and S. P. Ringer: Microsc. Microanal., 2007, vol. 13, pp. 448-463.

    Article  Google Scholar 

  19. D. Vaumousse, A. Cerezo, and P. J. Warren: Ultramicroscopy, 2003, vol. 95, pp. 215-221.

    Article  Google Scholar 

  20. E. A. Marquis: Appl. Phys. Lett., 2008, vol. 93, no. 18, pp. 181904.

    Article  Google Scholar 

  21. F. Vurpillot: Appl. Phys. Lett., 2000, vol. 76, pp. 3127.

    Article  Google Scholar 

  22. M.K. Miller, A. Cerezo, M.G. Hetherington, and G.D.W. Smith: Atom Probe Field Ion Microscopy, Clarendon Press, Oxford, 1996, pp. 196–199.

    Google Scholar 

  23. D. Murali, B. K. Panigrahi, M. C. Valsakumar, S. Chandra, C. S. Sundar, and B. Raj: J. Nucl. Mater., 2010, vol. 403, no. 1-3, pp. 113-116.

    Article  Google Scholar 

Download references

Acknowledgments

The authors want to thank the Institute of Chemical Technologies and Analytics at the University of Technology in Vienna for the use of its facilities. The authors especially thank Dr. Johannes Zbiral helping at the mechanical alloying process.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gerald Ressel.

Additional information

Manuscript submitted July 12, 2013.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ressel, G., Primig, S. & Leitner, H. The Effect of Zr Incorporation Caused by Ball Abrasion in a Milled Fe-Y2O3 Model Alloy. Metall Mater Trans A 45, 1552–1558 (2014). https://doi.org/10.1007/s11661-013-2052-9

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-013-2052-9

Keywords

Navigation