Skip to main content
Log in

Predictions of High Strain Rate Failure Modes in Layered Aluminum Composites

  • Symposium: Deformation, Damage, and Fracture of Light Metals and Alloys
  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

A dislocation density-based crystalline plasticity formulation, specialized finite-element techniques, and rational crystallographic orientation relations were used to predict and characterize the failure modes associated with the high strain rate behavior of aluminum layered composites. Two alloy layers, a high strength alloy, aluminum 2195, and an aluminum alloy 2139, with high toughness, were modeled with representative microstructures that included precipitates, dispersed particles, and different grain boundary distributions. Different layer arrangements were investigated for high strain rate applications and the optimal arrangement was with the high toughness 2139 layer on the bottom, which provided extensive shear strain localization, and the high strength 2195 layer on the top for high strength resistance The layer thickness of the bottom high toughness layer also affected the bending behavior of the roll-bonded interface and the potential delamination of the layers. Shear strain localization, dynamic cracking, and delamination are the mutually competing failure mechanisms for the layered metallic composite, and control of these failure modes can be used to optimize behavior for high strain rate applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. R. Lesuer, C.K. Syn, O.D. Sherby, J. Wadsworth, J.J. Lewandowski, and W.H. Hunt, Jr.: Int. Mater. Rev., 1996, vol. 41 (5), pp. 169–97.

    Article  Google Scholar 

  2. L. Li, K. Nagai, and F. Yin: Sci. Tech. Adv. Mater., 2008, vol. 9, pp. 023001 (1–11).

  3. C.M. Cepeda-Jiménez, P. Hidalgo, M. Pozuelo, O. A. Ruano, and F. Carreño: Metall. Mater. Trans. A, 2010, vol. 41 A, pp. 61–72.

    Article  Google Scholar 

  4. C.M. Cepeda-Jiménez, M. Pozuelo, J.M. García-Infanta, O.A. Ruano, and F. Carreño: Metall. Mater. Trans. A, 2009, vol. 40 A, pp. 69–79.

    Article  Google Scholar 

  5. A Weck, P. Bisaillon, L. Nong, T. Meunier, H. Jin, and M. Gallerneault: Mater. Sci. Eng. A, 2011, vol. 528 (19–20), pp. 6186–93.

    Article  Google Scholar 

  6. T.M. Osman, H.A. Hassan, and J.J. Lewandowski: Metall. Mater. Trans. A, 2008, vol. 39A, pp. 1993–2006.

    Article  Google Scholar 

  7. R.L. Woodward, and S.J. Cimpoeru: Int. J. Impact Eng., 1998, vol. 21 (3), pp. 117–31.

    Article  Google Scholar 

  8. B.A. Roeder, and C.T. Sun: Int. J. Impact Eng., 2001, vol. 25, pp. 169–85.

    Article  Google Scholar 

  9. R. Riddle, D. Lesuer, C. Syn, R. Gogolewski, and B. Cunningham: Finite Elem. Anal. Des., 1996, vol. 23, pp. 173–92.

    Article  Google Scholar 

  10. I.J. Polmear: Light Alloys- From Traditional Alloys to Nanocrystals, 4th ed., Elsevier, Burlington, MA, 2006, pp. 154–55.

    Google Scholar 

  11. H.G. Salem, W.M. Lee, L. Bodelot, G. Ravichandran, and M.A. Zikry: Metall. Mater. Trans. A, 2012, vol. 43(6), pp. 1895–901.

    Article  Google Scholar 

  12. W.M. Lee, and M.A. Zikry: Metall. Mater. Trans. A, 2011, vol. 42A, pp. 1215–21.

    Article  Google Scholar 

  13. H. Yan, and J.G. Lenard: Mater. Sci. Eng. A, 2004, vol. 385, pp. 419–28.

    Google Scholar 

  14. V. Orsini, and M. Zikry: Int. J. Plast., 2001, vol. 17(10), pp. 1393–417.

    Article  Google Scholar 

  15. M.A. Zikry, and M. Kao: J. Mech. Phys. Solids, 1996, vol. 44(11), pp. 1765–98.

    Article  Google Scholar 

  16. W. Ashmawi, and M. Zikry: ASME J. Eng. Mater. Technol., 2002, vol. 124(1), pp. 88–96.

    Article  Google Scholar 

  17. B. Peeters, M. Seefeldt, C. Teodosiu, S.R. Kalidindi, P. Van Houtte, and E. Aernoudt: Acta Mater., 2001, vol. 49(9), pp. 1607–619.

    Article  Google Scholar 

  18. I.J. Beyerlein, and C.N. Tome: Int. J. Plast., 2008, vol. 24, pp. 867–95.

    Article  Google Scholar 

  19. H. Mughrabi: Mater. Sci. Eng., 1987, vol. 85, pp. 15–31.

    Article  Google Scholar 

  20. P. Franciosi, A. Zaoui: Acta Metall., 1982 vol. 30(8), pp. 1627–37.

    Article  Google Scholar 

  21. T. Kameda, and M. A. Zikry: Scripta Mater., 1998, vol. 38(4), pp. 631–36.

    Article  Google Scholar 

  22. I.J. Polmear, and R.J. Chester: Scripta Metall., 1989, vol. 23(7), pp. 1213–18.

    Article  Google Scholar 

  23. D. Vaughan: Acta Metall., 1968, vol. 16(4), pp. 563–77.

    Article  Google Scholar 

  24. H.K. Hardy, and J.M. Silcock: J. Inst. Met., 1955–56, vol. 84, pp. 423–28.

  25. K. Elkhodary, L. Sun, D. Irving, D. Brenner, G. Ravichandran, and M.A. Zikry: J. Appl. Mech., 2009, vol. 76, pp. 051306-1–9.

  26. K.M. Knowles, and W.M. Stobbs: Acta Crystallogr. B, 1988, vol. 44, pp. 207–27.

    Article  Google Scholar 

  27. A. Garg, and J.M. Howe: Acta Metall. Mater., 1991, vol. 39(8), pp. 1939–46.

    Article  Google Scholar 

  28. S. Ringer, and K. Hono: Mater. Charact., 2000, vol. 44(1–2), pp. 101–131.

    Article  Google Scholar 

  29. S.C. Wang, and M.J. Starink: Int. Mater. Rev., 2005, vol. 50, pp. 193–215.

    Article  Google Scholar 

  30. R. Bonnet, and M. Loubradou: Phys. Status Solidi. A, 2002, vol. 194(1), pp. 173–91.

    Article  Google Scholar 

  31. M. Ignat, and F. Durand: Scripta Metall., 1976, vol. 10(7), pp. 623–26.

    Article  Google Scholar 

  32. L.F. Mandolfo: Aluminum Alloys—Structure and Properties, 1976, Butterworth, London, UK, pp. 505–07.

    Book  Google Scholar 

  33. P.S. Chen, A.K. Kuruvilla, T.W. Malone, and W.P. Stanton: J. Mater. Eng. Perform., 1998, vol. 7(5), pp. 682–90.

    Article  Google Scholar 

  34. J.C. Huang, and A.J. Ardell: Mater. Sci. Technol., 1987, vol. 3, pp. 176–88.

    Article  Google Scholar 

  35. M.C. Chaturvedi, and D.L. Chen: Mater. Sci. Forum, 2006, vol. 519–521, pp. 147–52.

    Article  Google Scholar 

  36. R. Cerny, J.M. Joubert, M. Latroche, A. Percheron-Guégan, and K. Yvon: J. Appl. Crystallogr., 2000, vol. 33, pp. 997–1005.

    Article  Google Scholar 

  37. J.C. Huang, A.J. Ardell: J. Phys., 1987, vol. C3, pp. 373–83.

    Google Scholar 

  38. J.M. Howe, J. Lee, A.K. Vasudevan: Metall. Trans. A, 1988, vol. 19A, pp. 2911–920.

    Article  Google Scholar 

  39. I.J. Plomear: Mater. Forum, 2004, vol. 28, pp. 1–14.

    Google Scholar 

  40. A. Deschamps, B. Decreus, F. De Geuser, T. Dorin, and M. Weyland: Acta Mater., 2013, vol. 61, pp. 4010–21.

    Article  Google Scholar 

  41. K.S. Prasad, A.A. Gokhale, A.K. Mukhopadhyay, D. Banerjee, and D.B. Goel: Acta Mater., 1999, vol. 47(8), pp. 2581–92.

    Article  Google Scholar 

  42. K.S. Vecchio, and D.B. Williams: Acta Metall., 1987, vol. 35(12), pp. 2959–70.

    Article  Google Scholar 

  43. M.A. Zikry: Comput. Struct., 1994, vol. 50, pp. 337–50.

    Article  Google Scholar 

  44. C.L. Williams, K.T. Ramesh, and D.P. Dandekar: J. Appl. Phys., 2012, vol. 111, 123528.

  45. M.A. Zikry, and S. Nemat-Nasser: Mech. Mater., 1990, vol. 10, pp. 215–37.

    Article  Google Scholar 

  46. K.I. Elkhodary, W.M. Lee, L. Sun, D.W. Brenner, and M.A. Zikry: J. Mater. Res., 2011, vol. 26(4), pp. 487–97.

    Article  Google Scholar 

  47. L.B. Freund: Dynamic Fracture Mechanics, 1st ed., Cambridge University Press, New York, 1990, pp. 104–50.

    Book  Google Scholar 

Download references

Acknowledgments

Support from the US Army Research Office Grant No. W911NF-12-R-0012 is gratefully acknowledged. Discussions and technical cooperation with Brian Gordon of Touchstone are also gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. A. Zikry.

Additional information

Manuscript submitted April 5, 2013.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Khanikar, P., Zikry, M.A. Predictions of High Strain Rate Failure Modes in Layered Aluminum Composites. Metall Mater Trans A 45, 60–71 (2014). https://doi.org/10.1007/s11661-013-2016-0

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-013-2016-0

Keywords

Navigation