Skip to main content

Irradiation Resistance of Multicomponent Alloys

Abstract

High-entropy alloys (HEAs) are characterized not only by high values of entropy but also by high atomic-level stresses originating from mixing of elements with different atomic sizes. Particle irradiation on solids produces atomic displacements and thermal spikes. The high atomic-level stresses in HEAs facilitate amorphization upon particle irradiation, followed by local melting and re-crystallization due to thermal spikes. We speculate that this process will leave much less defects in HEAs than in conventional alloys. For this reason, they may be excellent candidates as new nuclear materials. We discuss initial results of computer simulation on model binary alloys and an electron microscopy study on Zr-Hf-Nb alloys, which demonstrate extremely high irradiation resistance of these alloys against electron damage to support this speculation.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

References

  1. 1.

    J.-W. Yeh, S.-K. Chen, S.-J. Lin, J.-Y. Gan, T.-S. Chin, T.-T. Shun, C.-H. Tsau, and S.-Y. Chang: Adv. Eng. Mater., 2004, vol. 6, pp. 299-303.

    Article  Google Scholar 

  2. 2.

    J.-W. Yeh, Y.-L. Chen, S.-J. Lin, and S.-K. Chen: Mater. Sci. Forum, 2007, vol. 560, pp. 1-9.

    Article  Google Scholar 

  3. 3.

    Y.-J. Zhou, Y. Zhang, Y.L. Wang, and G.L. Chen: Appl. Phys. Lett., 2007, vol. 90, pp. 181904-1–4-4.

  4. 4.

    T. Egami, K. Maeda, and V. Vitek: Phil. Mag. A, 1980, vol. 41, pp. 883-901.

    Article  Google Scholar 

  5. 5.

    T. Egami and S. Aur: J. NonCrystal. Solids, 1987, vol. 89 pp. 60-74.

    Article  Google Scholar 

  6. 6.

    A. Sommerfeld: Mechanics of Deformable Bodies, Academic Press, New York, 1964.

    Google Scholar 

  7. 7.

    T. Egami and D. Srolovitz: J. Phys. F: Metal Physics, 1982, vol. 12, pp. 2141-2163.

    Article  Google Scholar 

  8. 8.

    T. Egami, M. Ojha, D.M. Nicholson, D. Louzguine-Luzgin, N. Chen, and A. Inoue: Phil. Mag. A, 2012, vol. 92, pp. 655-665.

    Article  Google Scholar 

  9. 9.

    J.D. Eshelby: Proc. Roy. Soc. London A 1957, vol. 241, pp. 376-396.

    Article  Google Scholar 

  10. 10.

    T. Egami and Y. Waseda: J. NonCrystal. Solids, 1984, vol. 64, pp. 113-134.

    Article  Google Scholar 

  11. 11.

    T. Egami: Mater. Sci. Eng. A, 1997, vol. 226-228, pp. 261-267.

    Article  Google Scholar 

  12. 12.

    T. Egami: J. NonCrystal. Solids, 1996, vol. 205-207, pp. 575-582.

    Article  Google Scholar 

  13. 13.

    C.S. Kiminami, R.D. Sa Lisboa, M.F. de Oliveira, C. Bolfarini, and W.J. Botta: Mater. Trans., 2007, vol. 48, pp. 1739-1742.

    Article  Google Scholar 

  14. 14.

    Y. Zhang, Y.-J. Zhou, J.-P. Lin, G.-L. Chen, and P.K. Liaw: Adv. Eng. Mater., 2008, vol. 10, pp. 534-538.

    Article  Google Scholar 

  15. 15.

    L.K. Mansur: J. Nucl. Mater., 1994, vol. 216, pp. 97-123.

    Article  Google Scholar 

  16. 16.

    Z. G. Wang, Ch. Dufour, E. Paumier and M. Toulemonde, J. Phys.: Condens. Matter, 1994, vol. 6, pp. 6733-6750.

    Article  Google Scholar 

  17. 17.

    R.E. Stoller: J. Nucl. Mater., 1997, vol. 244, pp. 195-204.

    Article  Google Scholar 

  18. 18.

    K. Nordlund, M. Ghaly, R. S. Averback, M. Caturla, T. Diaz de la Rubia, and J. Tarus, Phys. Rev. B, 1998, vol. 57, pp. 7556-7570.

    Article  Google Scholar 

  19. 19.

    D.T. Kulp, T. Egami, D.E. Luzzi, and V. Vitek: J. NonCryst. Solids, 1993, vol. 156-158, pp. 510-513.

    Article  Google Scholar 

  20. 20.

    P.R. Okamoto, N.Q. Lam, and L.E. Rehn: in Solid State Physics, vol. 52, H. Ehrenreich and F. Spaepen, eds., Academic Press, San Diego, 1999.

  21. 21.

    J.R. Morris, R.A. Aga, T. Egami, V.A. Levashov, Int. J. Mod. Phys. 2009, vol. 23, pp. 1229-1234.

    Article  Google Scholar 

  22. 22.

    T. Nagase, S. Anada, P.D. Rack, J.H. Noh, H. Yasuda, H. Mori, and T. Egami: Intermetallics, 2012, vol. 26, pp. 122-130.

    Article  Google Scholar 

  23. 23.

    T. Nagase, S. Anada, P.D. Rack, J.H. Noh, H. Yasuda, H. Mori, and T. Egami: Intermetallics, 2013, vol. 38, pp. 70-79.

    Article  Google Scholar 

  24. 24.

    T. Nagase, T. Sanda, A. Nino, W. Qin, H. Yasuda, H. Mori, Y. Umakoshi, and J.A. Szpunar. J. Non-Cryst. Solids, 2012, vol. 358, 502-518.

    Article  Google Scholar 

  25. 25.

    W. Guo, W. Dmowski, Ph. Rack, P. Liaw, and T. Egami, Metall. Mater. Trans. A, 2013, vol. 44A, pp. 1994-1997.

    Article  Google Scholar 

  26. 26.

    S. O. Kucheyev, J. S. Williams, C. Jagadish, J. Zou and G. Li, Phys. Rev. B, 2000, vol. 62, pp. 7510-7522.

    Article  Google Scholar 

  27. 27.

    S. O. Kucheyev, J. S. Williams, C. Jagadish, J. Zou, C. Evans, A. J. Nelson and A. V. Hamza, Phys. Rev. B, 2003, vol. 67, 094115, pp. 1-11.

    Google Scholar 

Download references

Acknowledgment

The research at the University of Tennessee was supported in part by the Department of Energy through the NEUP program, DE-AC07-05ID14517.

Author information

Affiliations

Authors

Corresponding author

Correspondence to T. Egami.

Additional information

Manuscript submitted May 1, 2013.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Egami, T., Guo, W., Rack, P.D. et al. Irradiation Resistance of Multicomponent Alloys. Metall Mater Trans A 45, 180–183 (2014). https://doi.org/10.1007/s11661-013-1994-2

Download citation

Keywords

  • Bulk Metallic Glass
  • Atomic Size
  • Multicomponent Alloy
  • Particle Irradiation
  • Frenkel Pair