Skip to main content

Phase Structure and High-Temperature Mechanical Properties of Two-Phase Fe-25Al-xZr Alloys Compared to Three-Phase Fe-30Al-xZr Alloys

Abstract

The structure and high-temperature mechanical properties of Fe-30 at. pct Al and Fe-25 at. pct Al alloys with various Zr contents are compared. The scanning electron microscope images in chemical contrast mode (R-BSE) as well as EDS, EBSD, and X-ray diffraction were used to determine the structure and phase composition. The as-cast alloys (both Fe-30Al and Fe-25Al) were observed to be two-phase DO3/B2 + Laves phase λ 1 (Fe,Al)2Zr alloys with typical fine lamellar eutectic areas. During the heat treatment of the Fe-25Al alloys, their structure transformed from a DO3/B2 matrix with fine lamellar eutectic into λ 1 globular particles situated in a DO3/B2 matrix. The same structure of Fe-30Al alloys decomposed into three phases: λ 1 and τ 1 Zr(Fe,Al)12 particles in a DO3/B2 matrix. The hardening in both groups of alloys (Fe-25Al and Fe-30Al) due to the presence of Zr-containing λ 1 and τ 1 phases is compared.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

References

  1. 1.

    C.G. McKamey, J.H. DeVan, P.F. Tortorelli and V.K. Sikka: J. Mater. Res., 1991, vol. 6, pp. 1779-1804.

    Article  Google Scholar 

  2. 2.

    N.S. Stoloff and C.T. Liu: Microstructure and Properties of Materials, vol. 2, J.C.M. Li, ed., World Scientific Publishing Co. Ltd., Singapore, 2000, pp. 139–176.

  3. 3.

    S.C. Deevi and V.K. Sikka: Intermetallics, 1996, vol. 4, pp. 357-375.

    Article  Google Scholar 

  4. 4.

    D.G. Morris: Intermetallics, 1998, vol. 6, pp. 753-758.

    Article  Google Scholar 

  5. 5.

    M. Palm: Intermetallics, 2005, vol. 13, pp. 1286-1295.

    Article  Google Scholar 

  6. 6.

    A. Schneider, L. Falat, G. Sauthoff and G. Frommeyer: Intermetallics, 2003, vol. 11, pp. 443-450.

    Article  Google Scholar 

  7. 7.

    L. Falat, A. Schneider, G. Sauthoff and G. Frommeyer: Intermetallics, 2005, vol. 13, pp. 1256-1262.

    Article  Google Scholar 

  8. 8.

    C.G. McKamey and P.J. Maziasz: Intermetallics, 1998, vol. 6, pp. 303-314.

    Article  Google Scholar 

  9. 9.

    F. Stein, G. Sauthoff and M. Palm: Ztschr. Metallkd., 2004, vol. 95, pp. 465-485.

    Google Scholar 

  10. 10.

    A. Wasilkowska, M. Bartsch, F. Stein, M. Palm, K. Sztwiertnia and G. Sauthoff: Mat. Sci. Eng. A, 2004, vol. 380, pp. 9-19.

    Article  Google Scholar 

  11. 11.

    A. Wasilkowska, M. Bartsch, F. Stein, M. Palm, G. Sauthoff and U. Messerschmidt: Mat. Sci. Eng. A, 2004, vol. 381, pp. 1-15.

    Article  Google Scholar 

  12. 12.

    F. Stein, M. Palm and G. Sauthoff: Intermetallics, 2005, vol. 13, pp. 1275-1285.

    Article  Google Scholar 

  13. 13.

    D.G. Morris, M.A. Munoz-Morris and L.M. Requejo: Acta Mater., 2006, vol. 54, pp. 2335-2341.

    Article  Google Scholar 

  14. 14.

    P. Kratochvíl, P. Kejzlar, R. Král and V. Vodičková: Intermetallics, 2012, vol. 20, pp. 39-46.

    Article  Google Scholar 

  15. 15.

    F. Stein. M. Palm and G. Sauthoff : Intermetallics, 2004, vol. 12, pp. 713-720.

    Article  Google Scholar 

  16. 16.

    F. Stein, M. Palm and G. Sauthoff: Intermetallics 2005, vol. 13, pp. 1056-1074.

    Article  Google Scholar 

  17. 17.

    P. Kejzlar: unpublished data.

  18. 18.

    M. Palm: J. Alloys Comp., 2009, vol. 475, pp. 173-177.

    Article  Google Scholar 

  19. 19.

    D.G. Morris and M.A.Munoz-Morris: Mat. Sci. Eng. A, 2012, vol. 552, pp. 134-144.

    Article  Google Scholar 

  20. 20.

    P. Kratochvíl, F. Dobeš, J. Pešička, P. Málek, J. Buršík, V. Vodičková and P. Hanus: Mat. Sci. Eng. A, 2012, vol. 548, pp. 175-182.

    Article  Google Scholar 

  21. 21.

    D.G. Morris, M.A. Muñoz-Morris, L.M. Requejo and C. Baudin: Intermetallics, 2006, vol. 13, pp. 1204-1207.

    Article  Google Scholar 

  22. 22.

    S. Milenkovic and M. Palm: Intermetallics, 2008, vol. 16, pp. 1212-1218.

    Article  Google Scholar 

  23. 23.

    A. Hotař, M. Palm, P. Kratochvíl, V. Vodičková and S. Daniš: Corr. Sci., 2012, vol. 63, pp. 71-81.

    Article  Google Scholar 

Download references

Acknowledgments

The present work is a part of the project supported by the Grant Agency of the Czech Republic under Nr. P108/12/1452. The authors would like to thank the Institute for Nanomaterials, Advanced Technologies and Innovation of the Technical University of Liberec for the use of its equipment for the study of the structure of the alloys. In addition, the assistance of the faculty of Metallurgy and Material Engineering (Prof. Ivo Schindler) of the Technical University in Ostrava, where the alloys were prepared, is acknowledged.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Petr Kratochvíl.

Additional information

Manuscript submitted May 13, 2013.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Kejzlar, P., Kratochvíl, P., Král, R. et al. Phase Structure and High-Temperature Mechanical Properties of Two-Phase Fe-25Al-xZr Alloys Compared to Three-Phase Fe-30Al-xZr Alloys. Metall Mater Trans A 45, 335–342 (2014). https://doi.org/10.1007/s11661-013-1987-1

Download citation

Keywords

  • Lave Phase
  • Annealed Alloy
  • Iron Aluminides
  • Globular Particle
  • Lamellar Eutectic