Skip to main content
Log in

Fatigue Characterization of Fluorogold and Fluorogreen Polymers

  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

The damage dissipated during fatigue crack propagation of fluorogold and fluorogreen polymeric materials has been studied using an automated data acquisition system (DAS). A low fatigue frequency of 1 Hz was performed under a tension-tension load-control fatigue test. All samples were notched with a notch-to-width ratio a/W of 0.1. Deformation, load, and hysteresis energy loops were measured continuously during the test and analyzed using the DAS. The calculations were based on the energy release rate J* and on the change in work expanded on damage formation and history-dependent viscous dissipative processes \( \dot{W}_{i} \). The modified crack layer (MCL) model was used for extracting material-related parameters including the specific energy of damageγ′ and the coefficient of energy dissipation β′. The MCL theory was proven valid for describing the damage and cracking behavior of fluorogold and fluorogreen materials. The two parameters γ′ and β′ are also suitable for the evaluation of the resistance to fracture and fatigue crack propagation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. J.R. Fried: Polymer Science and Technology, University of Minnesota, Prentice Hall PTR Publication, Minneapolis, MN, 1995.

    Google Scholar 

  2. S.M. Yeo and A.A. Polycarpou: Wear, 2012, in press.

  3. S.V. Gangal and W. Grot: Wiley-Interscience, Encyclopedia of Polymer Science and Engineering, Styrene Polymers to Toys, 2nd ed., Wiley, New York, NY, 1989, vol. 16, pp. 577–648.

  4. I. Franta: Elastomers and Rubber Compounding Materials, Studies in Polymer Science, vol. 1, Elsevier Science Publishing Company Inc., New York, NY, 1989.

    Google Scholar 

  5. H. Aglan, Y. Gan, M. El-Hadik, P. Faughnan, and C. Bryan: J. Mater. Sci., 1999, vol. 34, no. 1, pp. 83-97.

    Article  Google Scholar 

  6. J.M. Stoltzfus and F.J. Benz: Flammability and Sensitivity of Materials in Oxygen-Enriched Atmospheres, ASTM International Publications, West Conshohocken, PA, 1989.

    Google Scholar 

  7. T.-W. Chou and J.-M. Yang: Metall. Trans. A, 1986, vol. 17A, pp. 1547-59.

    Article  Google Scholar 

  8. E. Bründermann, H.-W. Hübers, and M.F. Kimmitt: Terahertz Techniques, Springer Series in Optical Sciences, vol. 151, Springer, Heidelberg, Germany, 2012, pp. 51-101.

    Google Scholar 

  9. Seismic Energy Products, L.P., Athens, TX, www.sepbearings.com.

  10. Y. Gan, M. El-Hadik, H. Aglan, P. Faughnan, and C. Bryan: J. Elast. Plastic., 1999, vol. 31, no. 2, pp. 96-129.

    Google Scholar 

  11. C. G’Sell, J.M. Hiver, and A. Dahoun: Int. J. Solids Struct., 2002, vol. 39, nos. 13-14, pp. 3857-72.

    Article  Google Scholar 

  12. M.N. James, C.J. Christopher, Y. Lu, and E.A. Patterson: Polymer, 2012, vol. 53, no. 7, pp 1558-70.

    Article  Google Scholar 

  13. J.G. Williams: Compos. Sci. Tech., 2010, vol. 70, no. 6, pp. 885-91.

    Article  Google Scholar 

  14. J. Lemaitre and J. Dufailly: Eng. Fract. Mech., 1987, vol. 28, nos. 5-6, pp. 643-61.

    Article  Google Scholar 

  15. Y.-W. Mai and P. Powell: J. Polymer Sci. Part B: Polymer Phys., 1991, vol. 29, no. 7, pp. 785-93.

    Article  Google Scholar 

  16. A. Ahagon and A.N. Kim: J. Polymer Sci.: Polymer Phys. Ed., 1975, vol. 13, no. 10, pp. 1903-11.

    Google Scholar 

  17. A.G. Thomas and M. Kadir: J. Polymer Sci.: Polymer Phys. Ed., 1984, vol. 22, no. 9, pp. 1623-34.

    Google Scholar 

  18. M. Kadir: Ph.D. Dissertation, University of London, London, 1980, p. 116.

  19. D.J. Browne, D. Stratton, M.D. Gilchrist, and C.J. Byrne: Metall. Mater. Trans. A, 2013, vol. 44A, pp. 2021-30.

    Article  Google Scholar 

  20. D. Gerard, H. Pierre, D. Suzanne, and S. Abbass: Advances in Hysteresis Loop Analysis and Interpretation by Low Cycle Fatigue Test Computerization, ASTM Special Technical Publication, 1994, vol. 1231, pp. 546-62.

  21. H.A. Aglan: Int. J. Damage Mechan., 1993, vol. 2, no. 1, pp. 53-72.

    Article  Google Scholar 

  22. V.A. Kuz’menko and A.D. Shevchuk: Strength Mater., 1972, vol. 4, no. 7, pp. 850-55.

    Article  Google Scholar 

  23. S.N. Zhurkov and V.S. Kuksenko: Int. J. Fract., 1975, vol. 11, no. 4, pp. 629-39.

    Article  Google Scholar 

  24. D. Jeonghyeon, J. Changwoo, N. Duk-Hyun, P.K. Choongnyun, B.S. Young, and L. Sunghak: Metall. Mater. Trans. A, 2011, vol. 42A, pp. 1191-1204.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Medhat Awad El-Hadek.

Additional information

Manuscript submitted May 4, 2013.

Rights and permissions

Reprints and permissions

About this article

Cite this article

El-Hadek, M.A. Fatigue Characterization of Fluorogold and Fluorogreen Polymers. Metall Mater Trans A 45, 317–323 (2014). https://doi.org/10.1007/s11661-013-1972-8

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-013-1972-8

Keywords

Navigation