Skip to main content
Log in

Phase Transformation and Microstructure of Zn2Ti3O8 Nanocrystallite Powders Prepared Using the Hydrothermal Process

  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

This paper examines the phase transformation and microstructure of Zn2Ti3O8 nanocrystallite powders prepared using the hydrothermal process that includes TiCl4 and Zn(NO3)2·6H2O as the initial materials. Differential thermal analysis, X-ray diffraction, transmission electron microscopy (TEM), selected area electron diffraction, nanobeam electron diffraction, and high resolution TEM were utilized to characterize the transition behavior of zinc titanate precursor powders after calcination. Nanocrystalline Zn2Ti3O8 powders with a size range of about 5.0 to 8.0 nm were obtained when the precursor powders were calcined at 773 K (500 °C) for 1 hour. When the zinc titanate precursor powders were calcined at 1073 K (800 °C) for 1 hour, the cubic crystal of Zn2Ti3O8 with a o = 0.8399 ± 0.0003 nm still remained the predominant crystalline phase and the crystallite size increased to 20.0 nm. In addition, ZnTiO3 phase first appeared because of the 13.8 pct of Zn2Ti3O8 decomposition when the zinc titanate precursor powders were calcined at 1073 K (800 °C) for 1 hour. When the zinc titanate precursor powders were calcined at 1073 K (800 °C) for 9 hours, the Zn2Ti3O8 crystallites grew continuously to 80.0 nm and enhanced the crystallinity. When the precursor powders were calcined at 1273 K (1000 °C) for 1 hour, Zn2TiO4 crystallites with a o = 0.8461 ± 0.0002 nm were the predominant crystalline phase.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. J.H. Swisher and K. Schwerdtfeger: J. Mater. Eng. Preform., 1992, vol. 1, pp.565-571.

    Article  Google Scholar 

  2. J.H. Swisher, J. Yang and R.P. Gupta: Ind. Eng. Chem. Res., 1995, vol. 34, pp.4463-4471.

    Article  Google Scholar 

  3. H. Kagata, T. Inoue, J. Kato, I. Kameyama and T. Ishizaki: Ceram. Trans., 1993, vol. 32, pp.81-90.

    Google Scholar 

  4. T. Negas, T. Yeager, S. Bell and N. Coats: Am. Ceram. Soc. Bull., 1993, vol. 72, pp.80-89.

    Google Scholar 

  5. H.T. Kim, J.D. Byun and Y. Kim: Mater. Res. Bull., 1998, vol. 33, pp.963-973.

    Article  Google Scholar 

  6. H.T. Kim, J.D. Byun and Y. Kim: Mater. Res. Bull., 1998, vol. 33, pp.975-986.

    Article  Google Scholar 

  7. F.H. Dulin and D.E. Rase: J. Am. Ceram. Soc., 1960, vol. 43, pp.125-131.

    Article  Google Scholar 

  8. S.F. Bartram and R.A. Slepetys: J. Am. Ceram. Soc., 1961, vol. 44, pp.493-499.

    Article  Google Scholar 

  9. O.Yamaguchi, M. Morimi, H. Kawabata, and K.Shimizu: J. Am. Ceram. Soc., 1987, vol. 70, pp. 97-98.

    Google Scholar 

  10. U. Steinike and B. Wallis: Cryst. Res. Technol., 1997, vol. 32, pp.187-193.

    Article  Google Scholar 

  11. M. Sugiura and K. Ikeda: J. Jpn. Ceram. Assoc., 1947, vol. 55, pp.62-66.

    Article  Google Scholar 

  12. H.T. Kim, S. Nahm, J.D. Byun and Y. Kim: J. Am. Ceram. Soc., 1999, vol. 82, pp.3476-3480.

    Article  Google Scholar 

  13. Y.S. Chang, Y.H. Chang, I.G. Chen, G.J. Chen and Y.L. Chai: J. Crystal Growth, 2002, vol. 243, pp.319-326.

    Article  Google Scholar 

  14. Y.S. Chang, Y.H. Chang, I.G. Chen, G.J. Chen and Y.L. Chai: Solid State Commu., 2003, vol. 128, pp.203-208.

    Article  Google Scholar 

  15. E. Hosono, S. Fujihara, M. Onuki and T. Kimura: J. Am. Ceram. Soc., 2004, vol. 87, pp.1785-1788.

    Article  Google Scholar 

  16. H.T. Kim, Y. Kim, M. Valant and D. Suvorov: J. Am. Ceram. Soc., 2001, vol. 84, pp.1081-1086.

    Article  Google Scholar 

  17. S.K. Manik, P. Bose and S.K. Pradhan: Mater. Chem. Phys., 2003, vol. 82, pp.837-847.

    Article  Google Scholar 

  18. A.I. Sheinkman, F.P. Sheinkman, I.P. Dobrovolskii and G.R. Zvyagina: Izv. Akad. Nauk SSSR Neorg. Mater., 1977, vol. 13, pp.1447-1450.

    Google Scholar 

  19. R.K. Datta: Final Report under U.S. Department of Energy Contract No. DE-AP21-93MC 53415, Virginia Polytechnic Institute and State University, Blacksburg, VA 24060, 1994.

  20. J. Yang and J. H. Swisher: Mater. Character., 1996, vol. 37, pp.153-159.

    Article  Google Scholar 

  21. V.B. Reddy, S.P. Goel and P.N. Mehrotry: Mater. Chem. Phys., 1984, vol. 10, pp.365-373.

    Article  Google Scholar 

  22. C.L. Wang, W.S. Hwang, K.M. Chang, H.H. Ko, C.S. Hsi, H.H. Huang, and M.C. Wang: Int. J. Mol. Sci., 2011, vol. 12, pp.935-945.

    Article  Google Scholar 

  23. C.L. Kuo, C.L. Wang, H.H. Ko, W.S. Hwang, K.M. Chang, W.L. Li, H.H. Huang, Y.H. Chang and M.C. Wang, Synthesis of zinc oxide nanocrystalline powders for cosmetic application, Ceram. Inter., 2010, vol. 36, pp. 693-698.

    Article  Google Scholar 

  24. B.P. Cim, J. Wang, S.C. Ng, C.H. Chew and L.M. Gan: Ceram. Inter., 1998, vol. 24, pp.205-209.

    Article  Google Scholar 

  25. K. Terabe, K. Kato, H. Miyazaki, S. Yamaguchi, A. Imai and Y. Iguchi: J. Mater. Sci., 1994, vol. 29, pp.1617-1622.

    Article  Google Scholar 

  26. J. Yu, X. Zhao and Q. Zhao: Thin Solid Films, 2000, vol. 379, pp.7-14.

    Article  Google Scholar 

  27. A.A. Aal, M.A. Barakat and R.M. Mohamed: Appl. Surface Sci., 2008, vol. 254, pp.4577-4583.

    Article  Google Scholar 

  28. R.C. Garve, P.S. Nicholson: J. Am. Ceram. Soc., 1972, vol. 55, pp.303-305.

    Article  Google Scholar 

  29. M. Ocaña, W.P. Hsu and E. Matijevic: Langmuir, 1991, vol. 7, pp.2911-2916.

    Article  Google Scholar 

  30. Y.L. Chai, Y.S. Chang, G.J. Chen and Y.J. Hsiao: Mater. Res. Bull., 2008, vol. 43, pp.1066-1073.

    Article  Google Scholar 

  31. M.C. Wang: J. Mater. Res., 1994, vol. 9, pp.2290-2297.

    Article  Google Scholar 

Download references

Acknowledgments

The authors sincerely thank the National Science Council of Taiwan for its financial support under NSC 100-2221-E-037-001. The authors also gratefully acknowledge Professor M.H. Hon for his suggestions during the manuscript preparation and the help of Mr. S.Y. Yao for assistance in TEM. We are also deeply thankful to the key reader and other reviewers for suggestions and help with the manuscript revision.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Horng-Huey Ko or Moo-Chin Wang.

Additional information

Manuscript submitted June 3, 2012.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wang, CL., Hwang, WS., Ko, HH. et al. Phase Transformation and Microstructure of Zn2Ti3O8 Nanocrystallite Powders Prepared Using the Hydrothermal Process. Metall Mater Trans A 45, 250–260 (2014). https://doi.org/10.1007/s11661-013-1966-6

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-013-1966-6

Keywords

Navigation