Skip to main content

Advertisement

Log in

Microstructure–Wear Resistance Correlation and Wear Mechanisms of Spark Plasma Sintered Cu-Pb Nanocomposites

  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

The dispersion of a softer phase in a metallic matrix reduces the coefficient of friction (COF), often at the expense of an increased wear rate at the tribological contact. To address this issue, unlubricated fretting wear tests were performed on spark plasma sintered Cu-Pb nanocomposites against bearing steel. The sintering temperature and the Pb content as well as the fretting parameters were judiciously selected and varied to investigate the role of microstructure (grain size, second-phase content) on the wear resistance properties of Cu-Pb nanocomposites. A combination of the lowest wear rate (~1.5 × 10−6 mm3/Nm) and a modest COF (~0.4) was achieved for Cu-15 wt pct Pb nanocomposites. The lower wear rate of Cu-Pb nanocomposites with respect to unreinforced Cu is attributed to high hardness (~2 to 3.5 GPa) of the matrix, Cu2O/Fe2O3-rich oxide layer formation at tribological interface, and exuding of softer Pb particles. The wear properties are discussed in reference to the characteristics of transfer layer on worn surface as well as subsurface damage probed using focused ion beam microscopy. Interestingly, the flash temperature has been found to have insignificant effect on the observed oxidative wear, and alternative mechanisms are proposed. Importantly, the wear resistance properties of the nanocomposites reveal a weak Hall–Petch-like relationship with grain size of nanocrystalline Cu.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  1. ASM Handbook: Friction, Wear and Lubrication Technology, vol. 18, ASM, Materials Park, OH, 1992.

  2. B. Bhushan: Principles and Applications of Tribology, 1st ed., John Wiley and Sons, US, 1999.

    Google Scholar 

  3. W.A. Glaeser: J. Metals, 1983, vol. 35, pp. 50–55.

    Google Scholar 

  4. B. Basu and M. Kalin: Tribology of Ceramics and Composites: Materials Science Perspective, 1st ed., John Wiley Publications, US, 2011.

    Book  Google Scholar 

  5. A.S. Sharma, K. Biswas, B. Basu and D. Chakravarty: Metall. Mater. Trans. A, 2011, vol. 42A, pp. 2072–2084.

    Article  Google Scholar 

  6. G.C. Pratt: Int. Metall. Rev., 1973, vol. 18, pp. 62–88.

    Article  Google Scholar 

  7. F.P. Bowden and D. Tabor: J. Appl. Phys., 1943, vol. 14, pp. 141–151.

    Article  Google Scholar 

  8. V.E. Buchanan, P.A. Molian, T.S. Sudershan and A. Akers: Wear, 1991, vol. 146, pp. 241–256.

    Article  Google Scholar 

  9. P.A. Molian, V.E. Buchanan, T.S. Sudershan and A. Akers: Wear, 1991, vol. 146, pp. 257–267.

    Article  Google Scholar 

  10. J.P. Pathak and S.N. Tiwari: Wear, 1992, vol. 155, pp. 37–47.

    Article  Google Scholar 

  11. B.K. Prasad: Wear, 2004, vol. 257, pp. 110–123.

    Article  Google Scholar 

  12. T. Kimura, K. Shimizu and K. Terada: Wear, 2007, vol. 263, pp. 586–591.

    Article  Google Scholar 

  13. T.B. Massalski, J.L. Murray, and L.H. Bennett, eds.: Binary Alloy Phase Diagrams, vol. 1, ASM International, OH, 1986, pp. 944–47.

  14. Y.S. Zhang, Z. Han, K. Wang and K. Lu: Wear, 2006, vol. 260, pp. 942–948.

    Article  Google Scholar 

  15. Y.S. Zhang, K. Wang, Z. Han and G. Liu: Wear, 2007, vol. 262, pp. 1463–1470.

    Article  Google Scholar 

  16. T.S. Srivatsan, B.G. Ravi, A.S. Naruka, L. Riester, S. Yoo and T.S. Sudarshan: Mater. Sci. Eng. A, 2001, vol. 311, pp. 22–27.

    Article  Google Scholar 

  17. A. S. Sharma, K. Biswas and B. Basu: J. Nanoparticle Res., 2013, vol. 15, pp. 1–12.

    Google Scholar 

  18. D.A. Rigney and J.P. Hirth: Wear, 1979, vol. 53, pp. 345–370.

    Article  Google Scholar 

  19. P. Heilmann and D.A. Rigney: Wear, 1981, vol. 72, pp. 195–281.

    Article  Google Scholar 

  20. Z.A. Munir, U.A. Tamburini and M. Ohyanagi: J. Mater. Sci., 2006, vol. 41, pp. 763–777.

    Article  Google Scholar 

  21. E.O. Hall: Proc. Phys. Soc., 1951, vol. B64, pp. 747–753.

    Article  Google Scholar 

  22. N.J. Petch: J. Iron and Steel Inst., 1953, vol. 174, pp. 25–28.

    Google Scholar 

  23. F.P. Bowden and D. Tabor: The Friction and Lubrication of Solids, Clarendon, Great Britain, 1950.

    Google Scholar 

  24. E. Rabinowicz: J. Lubrication Technol., 1975, vol. 97, pp. 217–249.

    Article  Google Scholar 

  25. Y. Tsuya and R. Takagi: Wear, 1964, vol. 7, pp. 131–143.

    Article  Google Scholar 

  26. N.P. Suh: Wear, 1973, vol. 25, pp. 111–124.

    Article  Google Scholar 

  27. B.K. Prasad, A.K. Patwardhan and A.H. Yegneswaran: Mater. Sci. Technol., 1996, vol. 12, pp. 427–435.

    Article  Google Scholar 

  28. L.H. Chen and D.A. Rigney: Wear, 1985, vol. 105, pp. 47–61.

    Article  Google Scholar 

  29. J.A. Williams: Tribol. Inter., 2005, vol. 38, pp. 863–870.

    Article  Google Scholar 

  30. E.A. Brandes and G.B. Brook, eds: Smithells Metals Reference Book, 7th ed., Butterworth-Heinemann, Oxford, 1992, pp. 13-1-13-119.

  31. F.E. Kennedy Jr., Wear, 1984, vol. 100, pp. 453–476.

    Article  Google Scholar 

  32. L. Lu, R. Schwaiger, Z.W. Shan, M. Dao, K. Lu and S. Suresh: Acta Mater., 2005, vol. 53, pp. 2169–2179.

    Article  Google Scholar 

  33. Y.S. Zhang, Z. Han and K. Lu: Wear, 2008, vol. 265, pp. 396–401.

    Article  Google Scholar 

Download references

Acknowledgments

We would like to acknowledge the reviewers for constructive criticism, in-depth analysis, and fruitful recommendation. Overall, the authors are extremely impressed with the reviewers. It was a pleasure to go through the reviewers’ comments. The authors would also like to acknowledge the funding agencies, the Department of Science and Technology (DST), Govt. of India, and CARE Grant, IIT Kanpur, for procuring the SPS facility at IIT Kanpur. AFMM, IISc Bangalore is thanked for facilitating the FIB characterization.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bikramjit Basu.

Additional information

Manuscript submitted March 31, 2013.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 344 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sharma, A.S., Biswas, K. & Basu, B. Microstructure–Wear Resistance Correlation and Wear Mechanisms of Spark Plasma Sintered Cu-Pb Nanocomposites. Metall Mater Trans A 45, 482–500 (2014). https://doi.org/10.1007/s11661-013-1965-7

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-013-1965-7

Keywords

Navigation