Skip to main content

Advertisement

Log in

Sintering High Tungsten Content W-Ni-Fe Heavy Alloys by Microwave Radiation

  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

This paper presents a detailed study of microwave (MW) sintering of W-Ni-Fe heavy alloys (WHAs) with tungsten (W) content 90 to 98 mass pct (Ni and Fe mass ratio of 7 to 3) in comparison with conventional (CV) hydrogen sintering. Experimental results show that WHAs were MW sintered to fully dense (≥99 pct of theoretical) when heated to sintering temperatures at a heating rate of 50 K/min to 80 K/min (50 °C/min to 80 °C/min) and isothermally held for 2 to 10 minutes, with sintering cycle times of only 25 to 35 minutes (excluding the cooling time). The desired microstructures of finer W grains, more matrix phases, and lower W contiguity (in 95W and 98W) were produced compared to the counterparts by CV sintering. Such microstructural features offered the alloys excellent tensile properties: ultimate tensile strengths (UTS) 1080 to 1110 MPa and tensile elongation 22.1 to 26.8 pct in 90 to 95W, and UTS 920 MPa and elongation 11.2 pct in 98W. MW sintering appeared to be more effective in fabricating WHAs with W content ≥95 pct. It was observed that the superior UTS with MW-sintered alloys was mainly due to the fast heating and shortened isothermal holding times. Prolonged sintering led to substantial grain coarsening as a result of faster tungsten grain growth in MW sintering, and consequently deteriorated the tensile properties. The grain growth rate constant K achieved was calculated to be 5.1 μm3/s for MW sintering compared to 2.9 μm3/s for CV sintering. Fast heating and short isothermal holding times are thus suggested for the fabrication of WHAs by MW sintering.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. J.C. Willams: Microwave processing of materials, National Academy Press, Washington DC, 1994, pp.73–77.

    Google Scholar 

  2. D.E. Clark and W.H. Sutton: Annu. Rev. Mater. Sci., 1996, vol. 26, pp. 299-331.

    Article  Google Scholar 

  3. E.T. Thostenson and T.-W. Chou: Composites Part A: Applied Science and Manufacturing, 1999, vol. 30, pp. 1055-1071.

    Article  Google Scholar 

  4. M. Gupta, W.W. Leong and Eugene: Microwaves and Metals, Wiley, Singapore, 2007.

    Book  Google Scholar 

  5. M. Oghbaei and O. Mirzaee: J. Alloys Compd., 2010, vol. 494, pp. 175-189.

    Article  Google Scholar 

  6. R. Roy, D. Agrawal and J. Cheng, S. Gedevanishvili: Nature, 1999, vol. 339, pp. 668-670.

    Google Scholar 

  7. R.M. Anklekar, D.K. Agrawal and R. Roy: Powder Metall., 2001, vol. 44, pp. 355-362.

    Article  Google Scholar 

  8. M. Jain, G. Skandan, K. Martin, K. Cho, B. Klotz, R. Dowding, D. Kapoor, D. Agrawal and J. Cheng: Int. J. Powder Metall., 2006, vol. 42, pp. 45-50.

    Google Scholar 

  9. K. Saitou: Scripta Mater., 2006, vol. 54, pp. 875-879.

    Article  Google Scholar 

  10. M.E. Alam and M. Gupta: Powder Metall., 2009, vol. 52, pp. 105-110.

    Article  Google Scholar 

  11. S.D. Luo, M. Yan, G.B. Schaffer and M. Qian: Metall. Mater. Trans. A, 2011, vol. 42A, pp. 2466-2474.

    Article  Google Scholar 

  12. A. Chatterjee, T. Basak and K.G. Ayappa: AIChE J., 1998, vol. 44, pp. 2302-2311.

    Article  Google Scholar 

  13. K.I. Rybakov, V.E. Semenov, S.E. Egorov, A.G. Eremeev, I.V. Plotnikov and Yu.V. Bykov: J. Appl. Phys., 2006, vol. 99, pp. 023506.

    Article  Google Scholar 

  14. V.D. Buchelnikov, D.V. Louzguine-Luzgin, G. Xie, S. Li, N. Yoshikawa, M. Sato, A.P. Anzulevich, I.V. Bychkov and A. Inoue: J. Appl. Phys., 2008, vol. 104, pp. 113505110.

    Article  Google Scholar 

  15. P. Villars, A. Prince, and H. Okamoto: Handbook of Ternary Alloy Phase Diagram, ASM International, Materials Park, OH, 1997, vol. 8, p. 10670.

    Google Scholar 

  16. R.M. German: Liquid phase sintering, Plenum Press, New York, 1985, pp. 133-145.

    Book  Google Scholar 

  17. L.L. Bourguignon and R.M. German: Int. J. Powder Metall., 1988, vol. 24, pp. 115-121.

    Google Scholar 

  18. B.H. Rabin and R.M. German: Metall. Trans. A, 1988, vol. 19, pp. 1523-1532.

    Article  Google Scholar 

  19. A. Upadhyaya, S.K. Tiwari and P. Mishra: Scripta Mater., 2007, vol. 56, pp. 5-8.

    Article  Google Scholar 

  20. A. Mondal, A. Upadhyaya and D. Agrawal: Mater. Sci. Eng. A, 2010, vol. 527, pp. 6870-6878.

    Article  Google Scholar 

  21. A. Mondal, A. Upadhyaya and D. Agrawal: J. Alloys Compd., 2011, vol. 509, pp. 301-310.

    Article  Google Scholar 

  22. C.S. Zhou, J.H. Yi, S.D. Luo, Y.D. Peng, L.Y. Li and G. Chen: J. Alloys Compd., 2009, vol. 482, pp. 6-8.

    Article  Google Scholar 

  23. C.S. Zhou, J.H. Yi, S.D. Luo, Y.D. Peng and G. Chen: Trans. Nonferrous Met. Soc. China, 2009, vol. 19, pp. 1601-1607.

    Google Scholar 

  24. C.S. Zhou, J.H. Yi, S.D. Luo, Y.D. Peng and H.Z. Wang: Mater. Sci. Eng. Powder Metall., 2010, vol. 15, pp. 300-304.

    Google Scholar 

  25. C. Zhao, J. Vleugels, C. Groffils, P.J. Luypaert and O. Van Der Biest: Acta Mater., 2000, vol. 48, pp. 3795-3801.

    Article  Google Scholar 

  26. R.M. German, A. Bose and S.S. Mani: Metall. Trans. A, 1992, vol. 23, pp. 211-229.

    Article  Google Scholar 

  27. A. Bose and R.M. German: Metall. Trans. A, 1988, vol. 19, pp. 2467-2476.

    Article  Google Scholar 

  28. E. Breval, J.P. Cheng, D.K.Agrawal, P. Gigl, M. Dennis, R. Roy, A.J. Papworth Mater. Sci. Eng. A, 2005, vol. 391, pp. 285-295.

    Article  Google Scholar 

  29. R.M. German, L.L. Bourguignon and B.H. Rabin: JOM, 1985, vol. 37. pp. 36-39.

    Article  Google Scholar 

  30. R.M. German, A. Bose and S.S. Mani: Metall. Trans. A, 1992, vol. 23A, pp. 211-219.

    Article  Google Scholar 

  31. P.W. Voorhees and M.E. Glicksman: Metall. Trans. A, 1984, vol. 15, pp. 1081-1088.

    Article  Google Scholar 

  32. A. Bose and R.M. German: Metall. Trans. A, 1988, vol.19, pp. 3100-3103.

    Article  Google Scholar 

  33. S.J. Park, J.M. Martin, J.F. Guo, J.L. Johnson and R.M. German: Metall. Mater. Trans. A, 2006, vol. 37, pp. 3337-3346.

    Article  Google Scholar 

  34. M.A. Janney, H.D. Kimrey, M.A. Schmidt and J.O. Kiggans: J. Am. Cer. Soc., 1991, vol. 74, pp. 1675-1681.

    Article  Google Scholar 

  35. Y.V. Bykov, S.V. Egorov, A.G. Eremeev, K.I. Rybakov, V.E. Semenov, A.A. Sorokin and S.A. Gusev: J. Mater. Sci., 2002, vol. 36, pp. 131-136.

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported by the Hunan Provincial Innovation Foundation for Postgraduates (CX2010B045). The authors also would like to thank The Project Sponsored by the Scientific Research Foundation for the Returned Overseas Chinese Scholars, State Education Ministry [(2008) 890].

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jianhong Yi.

Additional information

Manuscript submitted January 6, 2013.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhou, C., Yi, J. & Luo, S. Sintering High Tungsten Content W-Ni-Fe Heavy Alloys by Microwave Radiation. Metall Mater Trans A 45, 455–463 (2014). https://doi.org/10.1007/s11661-013-1964-8

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-013-1964-8

Keywords

Navigation