Skip to main content
Log in

Tensile Properties and Deformation Characteristics of a Ni-Fe-Base Superalloy for Steam Boiler Applications

  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

Ni-Fe-base superalloys due to their good manufacturability and low cost are the proper candidates for boiler materials in advanced power plants. The major concerns with Ni-Fe-base superalloys are the insufficient mechanical properties at elevated temperatures. In this paper, tensile properties, deformation, and fracture characteristics of a Ni-Fe-base superalloy primarily strengthened by γ′ precipitates have been investigated from room temperature to 1073 K (800 °C). The results showed a gradual decrease in the strength up to about 973 K (700 °C) followed by a rapid drop above this temperature and a ductility minimum at around 973 K (700 °C). The fracture surfaces were studied using scanning electron microscopy and the deformation mechanisms were determined by the observation of deformed microstructures using transmission electron microscopy. An attempt has been made to correlate the tensile properties and fracture characteristics at different temperatures with the observed deformation mechanisms.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Q. Wu, H. Song, R.W. Swindeman, J.P. Shingledecher, V. K. Vasudevan. Metall. Mater. Trans. A, 2008, vol. 39, pp. 2569–85.

    Article  Google Scholar 

  2. R. Krishna, S.V. Hainsworth, S.P.A. Gill, A. Strang, and H.V. Atkinson: Metall. Mater. Trans. A, 2013, vol. 44A, pp. 1419–29.

  3. H.U. Hong, I.S. Kim, B.G. Choi, M.Y. Kim, C.Y. Jo: Mater. Sci. Eng. A, 2009, vol. 517, pp. 125–31.

    Article  Google Scholar 

  4. W.Z. Wang, H. U. Hong, I.S. Kim, B.G. Choi, H.W. Jeong, M.Y. Kim, and C.Y. Jo: Mater. Sci. Eng. A, 2009, vol. 523, pp. 242–45.

    Article  Google Scholar 

  5. J.P. Shingledecker and G.M. Pharr: Metall. Mater. Trans. A, 2012, vol. 43, pp. 1902–10.

    Article  Google Scholar 

  6. N.D. Evans, P.J. Maziasz, R.W. Swindeman and G.D Smith. Scr. Mater., 2004, vol. 51, 503–07.

    Article  Google Scholar 

  7. J.T. Guo and X.K. Du: Acta Metal Sinica, 2005, vol. 41, pp. 1221–27.

    Google Scholar 

  8. F.S. Lin, S.C. Cheng, and X.S. Xie: Energy Mater., 2008, vol. 3, pp. 201–07.

    Article  Google Scholar 

  9. J. Wang, J.X. Dong, M.C. Zhang, and X.S. Xie: World Steel, 2011, vol. 2, pp. 26–35.

    Google Scholar 

  10. S.H.Wang, X.K. Du, and J.T. Guo: Trans. Met. Heat Treat., 1998, vol. 19, pp. 36–41.

    Google Scholar 

  11. S.H. Wang, X.K. Du, J.T. Guo, and X.Z. Xu: Corros. Sci. Prot. Technol. 2002, vol. 5, pp. 284–87.

    Google Scholar 

  12. S.H.Wang, X.K. Du, H.Z. Xu, J.T. Guo, and Q.W. Hu: Trans. Met. Heat Treat., 1995, vol. 16, pp. 51–54.

    Google Scholar 

  13. D. Sieborger, H. Knake, and U. Glatzel: Mater. Sci. Eng. A, 2001, vol. 298, pp. 26–33.

    Article  Google Scholar 

  14. C.L. Hale, W.S. Rollings, and M.L. Weaver: Mater. Sci. Eng. A, 2001, vol. 300, pp. 153–64.

    Article  Google Scholar 

  15. G.H. Bai, J.S. Li, R. Hu, Z.W. Tang, X.Y. Xue, and H.Z. Fu: Mater. Sci. Eng. A, 2011, vol. 528, pp. 1974–78.

    Article  Google Scholar 

  16. S.H. Chen, M.J. Zhao, and L.J. Rong: Mater. Sci. Eng. A, 2013, vol. 2013, pp. 7–12.

    Article  Google Scholar 

  17. S.H. Zhang, H.Y. Zhang, and M. Cheng: Mater. Sci. Eng. A, 2011, vol. 528, pp. 6253–58.

    Article  Google Scholar 

  18. B. M. B. Grant, E. M. Francis, J. Q. da Fonseca, M. R. Daymond, and M. Preuss: Acta Mater., 2012, vol. 60, pp. 6829–41.

    Article  Google Scholar 

  19. L.Z. He, Q. Zheng, X.F. Sun, H.R. Guan, Z.Q. Hu, A.K. Tieu, C. Lu, and H.T. Zhu: Mater. Sci. Eng. A, 2005, vol. 398, pp. 128–36.

    Article  Google Scholar 

  20. K. Gopinath, A.K. Gogia, S.V. Kamat, R. Balamuralikrishnan, and U. Ramamurty: Metall. Mater. Trans. A, 2008, vol. 39, pp. 2340–50.

    Article  Google Scholar 

  21. Z.W. Lian, J.J. Yu, X.F. Sun, H.R. Guan, and Z.Q. Hu: Mater. Sci. Eng. A, 2008, vol. 489, pp. 227–33.

    Article  Google Scholar 

  22. R.E. Reedhill and R. Abbaschian: Physical Metallurgy Principles, 3rd ed., Brooks/Cole Publication, Boston, MA, 1994, pp. 181–83.

    Google Scholar 

  23. Y.Wang, W.Z. Shao, L. Zhen, L. Yang, and X.M. Zhang: Mater. Sci. Eng. A, 2008, vol. 497, pp. 479–86.

    Article  Google Scholar 

  24. K.B.S. Rao, V. Seetharaman, S. L. Mannan, and P. Rodriguez: J. Nucl. Mater., 1981, vol. 102, pp. 7–16.

    Article  Google Scholar 

  25. N.F. Fiore: Rev. High Temp. Mat., 1975, vol. 2, 373–408.

    Google Scholar 

  26. X.Y. Li, J. Zhang, L.J. Rong, and Y.Y. Li: J. Alloys Compd., 2009, vol. 467, pp. 383–89.

    Article  Google Scholar 

  27. S. A. Sajjadi, S. Nategh, M. Isac, and S.M. Zebarjad: J. Mater. Process. Technol., 2004, vol. 155–156, pp. 1900–04.

    Article  Google Scholar 

  28. E. Shapiro and G.E. Dieter: Metall. Trans. A, 1970, vol. 1, pp. 1711–19.

    Article  Google Scholar 

Download references

Acknowledgments

The authors thank Mr. T. Hibaru, Mr. H. Kuroda, and Mr. Y. Taniuchi (National Institute for Materials Science, Japan) for alloy fabrication for this study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yuefeng Gu.

Additional information

Manuscript submitted March 1, 2013.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhong, Z., Gu, Y., Yuan, Y. et al. Tensile Properties and Deformation Characteristics of a Ni-Fe-Base Superalloy for Steam Boiler Applications. Metall Mater Trans A 45, 343–350 (2014). https://doi.org/10.1007/s11661-013-1959-5

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-013-1959-5

Keywords

Navigation