Partial Transient Liquid-Phase Bonding, Part I: A Novel Selection Procedure for Determining Ideal Interlayer Combinations, Validated Against Al2O3 PTLP Bonding Experience

Abstract

Partial transient liquid-phase (PTLP) bonding is a bonding process that can bond hard-to-join materials, such as ceramics. The process uses a multi-layer interlayer composed of a thick refractory core and thin diffusant layers on each side. Upon heating, the diffusant material melts, and diffusion occurs until the liquid isothermally solidifies. Selecting interlayer materials is a key problem in producing strong, reliable PTLP bonds; materials are usually selected empirically or system by system. This article presents a novel selection procedure that provides a generalized, comprehensive, first-principles-based approach. Components of the selection procedure are linked directly to key characteristics of PTLP bonding. A filtering routine that provides structure for the selection procedure is summarized in this article and detailed in a companion article. Specific capabilities of the routine, such as non-symmetric bonds, add to its effectiveness in identifying additional PTLP bond candidates. By way of example, output from the selection procedure, in conjunction with sessile drop data, is used to analyze all Al2O3 PTLP bonds in the current literature. All analyzed bonds are included in various outputs from the selection procedure, validating its comprehensiveness. Also, Al2O3 PTLP bonds are analyzed as a whole, leading to the identification of important trends that result in increased bond strength. Finally, additional interlayer combinations for PTLP bonding of Al2O3 are presented based on output from the selection procedure and existing sessile drop data.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Notes

  1. 1.

    The term homogenize is used to refer to the steady-state condition of the bond since that composition can reside in a two-phase region. Details of the bond composition are presented in a companion article.

  2. 2.

    Because PTLP bonds are not composed of a single element, they possess solidus and liquidus temperatures (as do alloys) if their composition is not eutectic or azeotropic. Throughout this article, the melting (or remelting) temperature of the PTLP bond refers to its solidus temperature.

  3. 3.

    This concentration is defined as the liquidus concentration measured with respect to the diffusant element.

  4. 4.

    The 1 at. pct concentration was converted to the diffusant layer thickness for the remaining binary systems using the conversion procedure outlined in the companion article. On average, 1 at. pct translates to a diffusant layer thickness of 0.7 pct of the RC thickness. This value is below the comprehensive range of reported thicknesses for diffusant layers in PTLP bonding (1 to 50 pct of the RC thickness[1]).

  5. 5.

    The four criteria are invariant—they can be applied in any order and will yield the same set of binary systems. However, criterion D is somewhat contingent upon criterion C: those systems that fail criterion C invariably fail criterion D, since c S,maxc S,min in all cases.

  6. 6.

    The filtering routine is rather broad and detailed—it is summarized in this article and explained in minute detail in the companion article.

  7. 7.

    This section reference is for the accompanying article.[10]

  8. 8.

    ICs are written in full form (E1|E2|E1), rather than abbreviating (E1|E2), to prevent confusion, as either element in a eutectic system can function as the RC. Furthermore, the full form accommodates non-symmetric bonds.

  9. 9.

    This effect is negligible for Cu.[26] Most metals and alloys are not sensitive (beyond the variation in reported data) to exposed crystal plane or substrate grade, be it the single-crystal variant of Al2O3 (sapphire) or a polycrystalline grade.

  10. 10.

    Whether the substrate material is single crystal (sapphire) or polycrystalline Al2O3, it usually has a minor or negligible effect on the reported contact angle(s). The atmosphere is omitted unless it has a pronounced effect. The temperature range encompassing all test results is reported, if available. The range of contact angles is inversely related to the accompanying temperature range.

  11. 11.

    For comparison, a diffusion bond using a Pt interlayer had an average strength of about 175 MPa.

  12. 12.

    This IC is output by the filtering routine only when thD is equal to or less than 0.4 pct of thRC and the minimum liquid concentration filter is relaxed.

  13. 13.

    The vertical pink lines correspond to the temperature ranges in which stoichiometric intermetallics exist for the given system. Because the lines in Figure 9 reside to the right of the plot area, any thD up to the maximum value of the plot (10 pct in this case) will cause each intermetallic to form during the diffusion process, if the bonding temperature coincides with the range of each line.

  14. 14.

    This procedure utilizes the phase diagram handbook published in 2000. Since constructing this method and program, a more recent handbook includes an updated phase diagram in which this intermetallic is no longer stoichiometric and is identified as βCo2Nb.

  15. 15.

    Other solid regions composed of intermetallics are not shown in Figure 9 for clarity. These additional regions extend out past 90 pct, obscuring the detail of the narrow solid solubility region and the fact that the selected value of thD is outside that region.

  16. 16.

    Now identified as Co6Nb7. The updated diagram also moves the eutectic isotherm between these to 1652 (1379) from 1676 K (1403 ºC). If this is true, then a third liquid region will form in the bonds between compositions of βCo2Nb and Co6Nb7.

  17. 17.

    An ultra-high-strength Al2O3 was used in this study.

  18. 18.

    Based on the diffusant layer thickness (0.8 µm Ti), the required maximum RC thickness (Al) would be 1.13 µm to achieve complete isothermal solidification.

  19. 19.

    The composition for the Ag active brazing alloy (ABA) was not given, but it is assumed to be similar to the other alloys.

  20. 20.

    Adding Zr or Hf to Ag also reduces the contact angle below 90 deg [1273 K (1000 ºC)][91] while adding Zr to an Ag-In alloy produces similar results—5 wt pct of Zr reduces the contact angle to about 60 deg [1023 K to 1173 K (750 ºC to 900 ºC)].[92]

  21. 21.

    While stoichiometric intermetallics are avoided in the Ag-In and Cu-In systems, all three of these elements form intermetallic phases (both stoichiometric and nonstoichiometric) with Ti at the temperatures used during bonding. A more in-depth study of bond microstructure might reveal a correlation between intermetallic formation and bond strength.

  22. 22.

    This assessment is based on the limited contact angle data that is available. It is possible that a more detailed assessment of contact angles for each binary system will evidence lower angles for alloys of the final liquid composition in contact with the Al2O3 substrate before complete isothermal solidification.

  23. 23.

    In making this assessment, E, G, and CTE were averaged based on composition for alloy RC materials.

  24. 24.

    The filtering routine output shown in Tables III through V are only selected portions, in the interest of space.

References

  1. 1.

    G.O. Cook III and C.D. Sorensen: J. Mater. Sci., 2011, vol. 46, pp. 5305–23. DOI:10.1007/s10853-011-5561-1.

  2. 2.

    M.L. Shalz, B.J. Dalgleish, A.P. Tomsia, and A.M. Glaeser: J Mat. Sci., 1993, vol. 28, pp. 1673–1684. doi:10.1007/BF00363367.

    CAS  Google Scholar 

  3. 3.

    M.L. Shalz, B.J. Dalgleish, A.P. Tomsia, and A.M. Glaeser: J Mat. Sci., 1994, vol. 29, pp. 3200–3208. doi:10.1007/BF00356663.

    CAS  Google Scholar 

  4. 4.

    M.L. Shalz, B.J. Dalgleish, A.P. Tomsia, R.M. Cannon, and A.M. Glaeser: J Mat. Sci., 1994, vol. 29, pp. 3678–3690. doi:10.1007/BF00357335.

    CAS  Google Scholar 

  5. 5.

    M.R. Locatelli, A.P. Tomsia, K. Nakashima, B.J. Dalgleish, and A.M. Glaeser: Key. Eng. Mater., 1995, vol. 111–112, pp. 157–190.

    Google Scholar 

  6. 6.

    S.M. Hong, C.C. Bartlow, T.B. Reynolds, J.T. McKeown, and A.M. Glaeser: Adv. Mat., 2008, vol. 20, pp. 4799–4803. doi: 10.1002/adma.200801550.

    CAS  Google Scholar 

  7. 7.

    B.J. Dalgleish, A.P. Tomsia, and A.M. Glaeser: Ceram. Trans., 1994, vol. 46, pp. 555–566.

    CAS  Google Scholar 

  8. 8.

    S.M. Hong, T.B. Reynolds, C.C. Bartlow, and A.M. Glaeser: Int. J Mat. Res., 2010, vol. 101, pp. 133–142.

    CAS  Google Scholar 

  9. 9.

    K. Nishimoto, K. Saida, and Y. Shinohara: Sci. Technol. Weld. Join., 2003, vol. 8, pp. 29–38. doi:10.1179/136217103225008946.

    CAS  Google Scholar 

  10. 10.

    G.O. Cook III and C.D. Sorensen: Metall. Mater. Trans. A, 2013. DOI:10.1007/s11661-013-1957-7.

  11. 11.

    T. Gray: The Photographic Periodic Table of the Elements. 2010. http://www.periodictable.com/. Accessed 15 June 2011.

  12. 12.

    H. Okamoto: Desk Handbook: Phase Diagrams for Binary Alloys, ASM International, Materials Park, Ohio, 2000.

    Google Scholar 

  13. 13.

    A. Schnell, A. Stankowski, and E. deMarcos: Proc. GT2006, ASME Turbo Expo 2006: Power Land, Sea, Air, Barcelona, 2006.

  14. 14.

    W.D. Kay: ASM Handbook: welding, brazing, soldering, vol. 6, ASM International, Metals Park, 1993.

    Google Scholar 

  15. 15.

    N.S. Bosco and F.W. Zok: Acta. Mater., 2004, vol. 52, pp. 2965–2972.

    CAS  Google Scholar 

  16. 16.

    Z. Li, Y. Zhou, and T.H. North: J Mat. Sci., 1995, vol. 30, pp. 1075–1082. doi:10.1007/BF01178448.

    CAS  Google Scholar 

  17. 17.

    Y. Zhou, W.F. Gale, and T.H. North: Int. Mater. Rev., 1995, vol. 40, pp. 181–196.

    CAS  Google Scholar 

  18. 18.

    N. Eustathopoulos and B. Drevet: Mat. Res. Soc. Symp. Proc., 1993, vol. 314, pp. 15–26.

    CAS  Google Scholar 

  19. 19.

    J.E. McDonald and J.G. Eberhart: Trans. Metall. Soc. AIME., 1965, vol. 233, pp. 512–517.

    CAS  Google Scholar 

  20. 20.

    R.M. Crispin and M. Nicholas: J Mater. Sci., 1976, vol. 11, pp. 17–21.

    CAS  Google Scholar 

  21. 21.

    G.O. Cook III: Ph.D. Dissertation, Brigham Young University, 2011.

  22. 22.

    N. Eustathopoulos and B. Drevet: Mater. Sci. Eng., 1998, vol. 249, pp. 176–183.

    Google Scholar 

  23. 23.

    N. Sobczak, M. Singh, and R. Asthana: Curr. Opin. Solid. State. Mater. Sci., 2005, vol. 9, pp. 241–253. doi:10.1016/j.cossms.2006.07.007.

    CAS  Google Scholar 

  24. 24.

    A. Cröll, N. Salk, F.R. Szofran, S.D. Cobb, and M.P. Volz: J Cryst. Growth., 2002, vol. 242, pp. 45–54.

    Google Scholar 

  25. 25.

    P. Shen, H. Fujii, and K. Nogi: Mater. Trans., 2004, vol. 45, pp. 2857–2863.

    CAS  Google Scholar 

  26. 26.

    P. Shen, H. Fujii, T. Matsumoto, and K. Nogi: J Mater. Sci., 2005, vol. 40, pp. 2329–2333.

    CAS  Google Scholar 

  27. 27.

    T.E. O’Brien and A.C.D. Chaklader: J Am. Ceram. Soc., 1974, vol. 57, pp. 329–332.

    Google Scholar 

  28. 28.

    J. Schmitz, J. Brillo, and I. Egry: J Mater. Sci., 2010, vol. 45, pp. 2144–2149. doi:10.1007/s10853-010-4212-2.

    CAS  Google Scholar 

  29. 29.

    K. Nogi: Scr. Mater., 2010, vol. 62, pp. 945–948. doi:10.1016/j.scriptamat.2010.03.007.

    CAS  Google Scholar 

  30. 30.

    L. Zhao and V. Sahajwalla: ISIJ. Int., 2003, vol. 43, pp. 1–6.

    CAS  Google Scholar 

  31. 31.

    S.K. Rhee: J Am. Ceram. Soc., 1971, vol. 54, pp. 376–379.

    CAS  Google Scholar 

  32. 32.

    E. Saiz, R.M. Cannon, and A.P. Tomsia: Annu. Rev. Mater. Res., 2008, vol. 38, pp. 197–226.

    CAS  Google Scholar 

  33. 33.

    A. Meier, P.R. Chidambaram, and G.R. Edwards: J Mater. Sci., 1995, vol. 30, pp. 3791–3798.

    CAS  Google Scholar 

  34. 34.

    M. Naka, Y. Hirono, and I. Okamoto: Trans. JWRI., 1984, vol. 13, pp. 29–34.

    Google Scholar 

  35. 35.

    E. Rocha-Rangel, P.F. Becher, and E. Lara-Curzio: Mater. Sci. Forum., 2003, vol. 442, pp. 97–102.

    CAS  Google Scholar 

  36. 36.

    N. Shinozaki, N. Fukami, H. Kaku, and K. Mukai: J Japan. Inst. Metals., 1999, vol. 63, pp. 1009–1014.

    CAS  Google Scholar 

  37. 37.

    S.P. Mehrotra and A.C.D. Chaklader: Metall. Trans. B, 1985, vol. 16B, pp. 567–575.

    CAS  Google Scholar 

  38. 38.

    A.J. Moorhead: Adv. Ceram. Mater., 1987, vol. 2, pp. 159–166.

    CAS  Google Scholar 

  39. 39.

    N. Sobczak, R. Asthana, M. Ksiazek, W. Radziwill, and B. Mikulowski: Metall. Mater. Trans. A, 2004, vol. 35A, pp. 911–923.

    CAS  Google Scholar 

  40. 40.

    M.R. Locatelli, B.J. Dalgleish, K. Nakashima, A.P. Tomsia, and A.M. Glaeser: Ceram. Int., 1997, vol. 23, pp. 313–322.

    CAS  Google Scholar 

  41. 41.

    M.R. Locatelli, B.J. Dalgleish, A.P. Tomsia, A.M. Glaeser, H. Mastumoto, and K. Nakashima: 4th Eur. Ceram. Soc. Conf. Vol. 9 Coatings, Riccione, 1995.

  42. 42.

    M.R. Locatelli, K. Nakashima, B.J. Dalgleish, A.P. Tomsia, and A.M. Glaeser: Adv. Ceram. Matrix Compos. II Proc. Sympos. ACS 96th Annu. Meet., Indianapolis, 1994.

  43. 43.

    M. Ksiazek, M. Richert, A. Tchorz, and L. Boron: J Mat. Eng. Perform., 2011, vol. 21, pp. 690–695.

    Google Scholar 

  44. 44.

    B.J. Dalgleish, A.P. Tomsia, K. Nakashima, M.R. Locatelli, and A.M. Glaeser: Scr. Metall. Mater., 1994, vol. 31, pp. 1043–1048.

    CAS  Google Scholar 

  45. 45.

    S.M. Hong: Ph.D. Dissertation, University of California, Berkeley, 2009.

  46. 46.

    M. Ksiazek, N. Sobczak, B. Mikulowski, W. Radziwill, B. Winiarski, and M. Wojcik: J Mat. Sci., 2005, vol. 40, pp. 2513–2517. doi:10.1007/s10853-005-1984-x.

    CAS  Google Scholar 

  47. 47.

    R.A. Marks, J.D. Sugar, and A.M. Glaeser: J Mater. Sci., 2001, vol. 36, pp. 5609–5624.

    CAS  Google Scholar 

  48. 48.

    S.M. Hong and A.M. Glaeser: Proc. 3rd Int. Brazing Solder. Conf., Crowne Plaza Riverwalk Hotel, San Antonio, TX, 2006.

  49. 49.

    K. Nakashima, T. Makino, K. Mori, and A.M. Glaeser: J Mater. Synth. Process., 1998, vol. 6, pp. 271–277.

    CAS  Google Scholar 

  50. 50.

    H. Matsumoto, M.R. Locatelli, K. Nakashima, A.M. Glaeser, and K. Mori: Mater. Trans. JIM., 1995, vol. 36, pp. 555–564.

    CAS  Google Scholar 

  51. 51.

    J. Sugar, J. McKeown, T. Akashi, S. Hong, K. Nakashima, and A.M. Glaeser: J Eur. Ceram. Soc., 2006, vol. 26, pp. 363–372.

    CAS  Google Scholar 

  52. 52.

    S.M. Hong: M.S. Thesis, University of California, Berkeley, 2006.

  53. 53.

    M. Nicholas: J Mater. Sci., 1968, vol. 3, pp. 571–576.

    CAS  Google Scholar 

  54. 54.

    K. Nogi, K. Oishi, and K. Ogino: J Japan. Inst. Met., 1988, vol. 52, pp. 72–78.

    CAS  Google Scholar 

  55. 55.

    N. Eustathopoulos, B. Drevet, and M.L. Muolo: Mater. Sci. Eng. A, 2001, vol. 300, pp. 34–40.

    Google Scholar 

  56. 56.

    J. Lee, H. Ishimura, and T. Tanaka: Scr. Mater., 2006, vol. 54, pp. 1369–1373. doi:10.1016/j.scriptamat.2005.12.006.

    CAS  Google Scholar 

  57. 57.

    A.C.D. Chaklader, W.W. Gill, and S.P. Mehrotra: Surfaces and Interfaces in Ceramic and Ceramic-Metal Systems, Material Science Research, vol. 14, Plenum Press, New York, 1981, pp. 421–432.

  58. 58.

    P. Kritsalis, V. Merlin, L. Coudurier, and N. Eustathopoulos: Acta. Metall. Mater., 1992, vol. 40, pp. 1167–1175.

    CAS  Google Scholar 

  59. 59.

    C. Wan, P. Kritsalis, B. Drevet, and N. Eustathopoulos: Mater. Sci. Eng. A, 1996, vol. 207, pp. 181–187.

    Google Scholar 

  60. 60.

    J.F. Silvain, J.C. Bihr, and J. Douin: Composites Part. A, 1998, vol. 29A, pp. 1175–1183.

    CAS  Google Scholar 

  61. 61.

    G. Levi, C. Scheu, and W.D. Kaplan: Interface. Sci., 2001, vol. 9, pp. 213–220.

    CAS  Google Scholar 

  62. 62.

    G. Levi, D.R. Clarke, and W.D. Kaplan: Interface. Sci., 2004, vol. 12, pp. 73–83.

    CAS  Google Scholar 

  63. 63.

    N. Eustathopoulos, N. Sobczak, A. Passerone, and K. Nogi: J Mater. Sci., 2005, vol. 40, pp. 2271–2280.

    CAS  Google Scholar 

  64. 64.

    G. Levi and W.D. Kaplan: J Mater. Sci., 2006, vol. 41, pp. 817–821. doi:10.1007/s10853-006-6565-0.

    CAS  Google Scholar 

  65. 65.

    W.A.N. Chuangeng, P. Kritsalis, and N. Eustathopoulos: J Mater. Sci. Technol., 1994, vol. 10, pp. 466–468.

    Google Scholar 

  66. 66.

    J.X. Zhang, R.S. Chandel, and H.P. Seow: Int. J Mod. Phys. B, 2002, vol. 16, pp. 50–56.

    CAS  Google Scholar 

  67. 67.

    P. Shen, H. Fujii, and K. Nogi: J Mater. Res., 2005, vol. 20, pp. 940–951.

    CAS  Google Scholar 

  68. 68.

    K. Sang, L. Weiler, and E. Aulbach: Ceram. Int., 2010, vol. 36, pp. 719–726. doi:10.1016/j.ceramint.2009.11.005.

    CAS  Google Scholar 

  69. 69.

    T.B. Reynolds, C.C. Bartlow, S.M. Hong, and A.M. Glaeser: Supplemental Proceedings: General Paper Selections, vol. 3, TMS, 2009, p. 645.

  70. 70.

    P.D. Ownby and K.W.K. Li: J Am. Ceram. Soc., 1991, vol. 74, pp. 1275–1281.

    CAS  Google Scholar 

  71. 71.

    D.J. Wang and S.T. Wu: Acta. Metall. Mater., 1994, vol. 42, pp. 4029–4034.

    CAS  Google Scholar 

  72. 72.

    H. Miyahara, R. Muraoka, N. Mori, and K. Ogi: J Japan. Inst. Metals., 1995, vol. 59, pp. 660–665.

    CAS  Google Scholar 

  73. 73.

    G. Levi and W.D. Kaplan: Mat. Res. Soc. Symp. Proc. 2001. vol. 654. pp. AA4.6.1–AA4.6.10.

  74. 74.

    G. Levi and W.D. Kaplan: Acta. Mater., 2003, vol. 51, pp. 2793–2802. doi:10.1016/S1359-6454(03)00084-3.

    CAS  Google Scholar 

  75. 75.

    E. Saiz, A.P. Tomsia, and K. Suganuma: J Eur. Ceram. Soc., 2003, vol. 23, pp. 2787–2796. doi:10.1016/S0955-2219(03)00290-5.

    CAS  Google Scholar 

  76. 76.

    P. Shen, H. Fujii, T. Matsumoto, and K. Nogi: J Am. Ceram. Soc., 2004, vol. 87, pp. 2151–2159.

    Google Scholar 

  77. 77.

    A. Sangghaleh and M. Halali: J Mater. Process. Technol., 2008, vol. 197, pp. 156–160. doi:10.1016/j.jmatprotec.2007.06.024.

    CAS  Google Scholar 

  78. 78.

    A.J. Klinter, G. Mendoza–Suarez, and R.A.L. Drew: Mater. Sci. Eng. A, 2008, vol. 495, pp. 147–152. doi:10.1016/j.msea.2007.10.113.

    Google Scholar 

  79. 79.

    J. Aguilar-Santillan: Metall. Mater. Trans. B, 2009, vol. 40B, pp. 376–387. doi:10.1007/s11663-009-9237-z.

    CAS  Google Scholar 

  80. 80.

    P. Shen, X.H. Zheng, Q.L. Lin, D. Zhang, and Q.C. Jiang: Metall. Mater. Trans. A, 2009, vol. 40A, pp. 444–449. doi:10.1007/s11661-008-9718-8.

    CAS  Google Scholar 

  81. 81.

    J. Aguilar-Santillan: Metall. Mater. Trans. A, 2010, vol. 41A, pp. 676–685. doi:10.1007/s11661-009-0144-3.

    CAS  Google Scholar 

  82. 82.

    A.J. Klinter, C.A. Leon-Patiño, and R.A.L. Drew: Acta. Mater., 2010, vol. 58, pp. 1350–1360. doi:10.1016/j.actamat.2009.10.040.

    CAS  Google Scholar 

  83. 83.

    M. Ksiazek, B. Mikulowski, and M. Richert: J Mater. Sci., 2010, vol. 45, pp. 2194–2202. doi:10.1007/s10853-010-4214-0.

    CAS  Google Scholar 

  84. 84.

    M.L. Muolo, F. Valenza, A. Passerone, and D. Passerone: Mater. Sci. Eng. A, 2008, vol. 495, pp. 153–158. doi:10.1016/j.msea.2007.06.101.

    Google Scholar 

  85. 85.

    D.S. Yan and S. Blairs: Proc. AUSTCERAM 80, Ninth Aust. Ceram. Conf. Sydney, Australia. 1980. p. 319.

  86. 86.

    O. Kozlova, R. Voytovych, and N. Eustathopoulos: Scr. Mater., 2011, vol. 65, pp. 13–16. doi:10.1016/j.scriptamat.2011.03.026.

    CAS  Google Scholar 

  87. 87.

    R. Standing and M. Nicholas: J Mater. Sci., 1978, vol. 13, pp. 1509–1514.

    CAS  Google Scholar 

  88. 88.

    L. Espié, B. Drevet, and N. Eustathopoulos: Metall. Mater. Trans. A, 1994, vol. 25A, pp. 599–605.

    Google Scholar 

  89. 89.

    P.R. Chidambaram, A. Meier, and G.R. Edwards: Mater. Sci. Eng. A, 1996, vol. 206, pp. 249–258.

    Google Scholar 

  90. 90.

    M.G. Nicholas, T.M. Valentine, and M.J. Waite: J Mater. Sci., 1980, vol. 15, pp. 2197–2206.

    CAS  Google Scholar 

  91. 91.

    R.E. Loehman, F.M. Hosking, B. Gauntt, and P.G. Kotula: J Mater. Sci., 2005, vol. 40, pp. 2319–2324.

    CAS  Google Scholar 

  92. 92.

    X.M. Xue, Z.T. Sui, and J.T. Wang: J Mater. Sci. Lett., 1992, vol. 11, pp. 1514–1517.

    CAS  Google Scholar 

  93. 93.

    C.C. Lin, R.B. Chen, and R.K. Shiue: J Mater. Sci., 2001, vol. 36, pp. 2145–2150.

    CAS  Google Scholar 

  94. 94.

    R. Voytovych, L.Y. Ljungberg, and N. Eustathopoulos: Scr. Mater., 2004, vol. 51, pp. 431–435. doi:10.1016/j.scriptamat.2004.05.002.

    CAS  Google Scholar 

  95. 95.

    R. Voytovych, F. Robaut, and N. Eustathopoulos: Acta. Mater., 2006, vol. 54, pp. 2205–2214. doi:10.1016/j.actamat.2005.11.048.

    CAS  Google Scholar 

  96. 96.

    B. Gibbesch, G. Elssner, and G. Petzow: Biomater., 1992, vol. 13, pp. 455–461.

    CAS  Google Scholar 

  97. 97.

    A. Ureña, J.M. Gómez de Salazar, and J. Quiñones: J Mater. Sci., 1992, vol. 27, pp. 599–606.

    Google Scholar 

  98. 98.

    V. Ghetta, J. Fouletier, and D. Chatain: Acta. Mater., 1996, vol. 44, pp. 1927–1936.

    CAS  Google Scholar 

  99. 99.

    J.G. Li, D. Chatain, L. Coudurier, and N. Eustathopoulos: J Mater. Sci. Lett., 1988, vol. 7, pp. 961–963.

    CAS  Google Scholar 

  100. 100.

    A. Gauffier, E. Saiz, A.P. Tomsia, and P.Y. Hou: J Mater. Sci., 2007, vol. 42, pp. 9524–9528. doi:10.1007/s10853-007-2093-9.

    CAS  Google Scholar 

  101. 101.

    M. Naka, Y. Hirono, and I. Okamoto: Trans. JWRI., 1987, vol. 16, pp. 81–87.

    Google Scholar 

  102. 102.

    A.J. Klinter and R.A.L. Drew: MetFoam. Proc. Fifth Int. Conf. Porous Met. Metall. Foams. 2007. p. 23.

  103. 103.

    A. Sangghaleh and M. Halali: Appl. Surf. Sci., 2009, vol. 255, pp. 8202–8206. doi:10.1016/j.apsusc.2009.05.044.

    CAS  Google Scholar 

  104. 104.

    P. Shen, H. Fujii, T. Matsumoto, and K. Nogi: J Am. Ceram. Soc., 2005, vol. 88, pp. 912–917. doi:10.1111/j.1551-2916.2005.00180.x.

    CAS  Google Scholar 

  105. 105.

    G.F. Ma, H.F. Zhang, H. Li, and Z.Q. Hu: J Alloys. Compd., 2008, vol. 462, pp. 343–346. doi:10.1016/j.jallcom.2007.08.049.

    CAS  Google Scholar 

  106. 106.

    K. Nakashima, K. Takihira, K. Mori, and N. Shinozaki: Mater. Trans. JIM., 1992, vol. 33, pp. 918–926.

    Google Scholar 

  107. 107.

    E. Kapilashrami, A. Jakobsson, A.K. Lahiri, and S. Seetharaman: Metall. Mater. Trans. B, 2003, vol. 34B, pp. 193–199.

    CAS  Google Scholar 

  108. 108.

    E. Kapilashrami and S. Seetharaman: J Mater. Sci., 2005, vol. 40, pp. 2371–2375.

    CAS  Google Scholar 

  109. 109.

    M. Shin, J. Lee, and J.H. Park: ISIJ. Int., 2008, vol. 48, pp. 1665–1669.

    CAS  Google Scholar 

  110. 110.

    M. Gelbstein, N. Froumin, and N. Frage: Mater. Sci. Eng. A, 2008, vol. 495, pp. 159–163. doi:10.1016/j.msea.2007.10.100.

    Google Scholar 

  111. 111.

    J. Lee, M. Shin, J.H. Park, and S. Seetharaman: Ironmak. Steelmak., 2010, vol. 37, pp. 512–515.

    CAS  Google Scholar 

  112. 112.

    K. Mukai, Z. Li, and M. Zeze: Mater. Trans., 2002, vol. 43, pp. 1724–1731.

    CAS  Google Scholar 

  113. 113.

    Z. Li, M. Zeze, and K. Mukai: Mater. Trans., 2003, vol. 44, pp. 2108–2113.

    CAS  Google Scholar 

  114. 114.

    P. Kritsalis, B. Drevet, N. Valignat, and N. Eustathopoulos: Scr. Metall. Mater., 1994, vol. 30, pp. 1127–1132.

    CAS  Google Scholar 

  115. 115.

    F. Valenza, M.L. Muolo, and A. Passerone: J Mater. Sci., 2010, vol. 45, pp. 2071–2079. doi:10.1007/s10853-009-3801-4.

    CAS  Google Scholar 

  116. 116.

    N. Kaiser, A. Cröll, F.R. Szofran, S.D. Cobb, and K.W. Benz: J Cryst. Growth., 2001, vol. 231, pp. 448–457.

    CAS  Google Scholar 

  117. 117.

    P. Shen, D. Zhang, Q.L. Lin, L.X. Shi, and Q.C. Jiang: Metall. Mater. Trans. A, 2010, vol. 41A, pp. 1621–1626. doi:10.1007/s11661-010-0224-4.

    CAS  Google Scholar 

  118. 118.

    C. Fritze and G. Nientit: J Mater. Sci. Lett., 1995, vol. 14, pp. 464–466.

    CAS  Google Scholar 

  119. 119.

    A. Meier, V. Gabriel, P.R. Chidambaram, and G.R. Edwards: Mater. Manuf. Process., 1995, vol. 10, pp. 625–641.

    CAS  Google Scholar 

  120. 120.

    I. Rivollet, D. Chatain, and N. Eustathopoulos: J Mater. Sci., 1990, vol. 25, pp. 3179–3185.

    CAS  Google Scholar 

  121. 121.

    H. Taimastu, T. Tani, and H. Kaneko: J Mater. Sci., 1996, vol. 31, pp. 6383–6387.

    Google Scholar 

  122. 122.

    Y.V. Naidich, V.V. Poluyanskaya, V.M. Puzikov, and A.Y. Danko: Powder. Metall. Met. Ceram., 2006, vol. 45, pp. 468–475.

    CAS  Google Scholar 

  123. 123.

    R. Kolenak, P. Sebo, M. Provaznik, M. Kolenakova, and K. Ulrich: Mater. Des., 2011, vol. 32, pp. 3997–4003. doi:10.1016/j.matdes.2011.03.022.

    CAS  Google Scholar 

  124. 124.

    L. Gremillard, E. Saiz, J. Chevalier, and A.P. Tomsia: Int. J. Mater. Res. Adv. Tech., 2004, vol. 95, pp. 261–265.

    CAS  Google Scholar 

  125. 125.

    L. Gremillard, E. Saiz, V.R. Radmilovic, and A.P. Tomsia: J Mater. Res., 2006, vol. 21, pp. 3222–3233.

    CAS  Google Scholar 

Download references

Acknowledgments

This work was funded by the Office of Naval Research under Grant Number N00014-07-1-0872, Dr. William Mullins, Program Officer.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Grant O. Cook III.

Additional information

Manuscript submitted December 27, 2012.

Appendix A: Supplemental Al2O3 Sessile Drop Angles

Appendix A: Supplemental Al2O3 Sessile Drop Angles

This appendix includes supplemental sessile drop angle data for metals and alloys on Al2O3 that were not used in the Al2O3 PTLP bonds analyzed in this paper. The data summarized here could be helpful in assessing other candidate PTLP bonds. For conciseness, this data is combined for single crystal (sapphire) and polycrystalline Al2O3, since this usually has a minor or negligible effect on contact angle. The atmosphere is omitted unless it has a major effect on contact angle. The temperature range encompassing all test results, if available, is included in parentheses and correlates inversely with the contact angle range.

Al-Based Alloys

Al produces contact angles in the 35 to 180 deg range [933 K to 1773 K (660 °C to 1500 °C); see Section V–D–1]. Alloying Cu with Al produces a minimum contact angle somewhere in the range of 50 to 82 deg [(923 K to 1523 K (650 °C to 1250 °C)] with a similar variance in corresponding composition, possibly due to the wide range of temperatures used.[34,78,82,101,102] On the other hand, adding five at. pct Al to Cu yielded angles of 104 to 150 deg.[63]

An Al-2.5La alloy (at. pct) produces a contact angle of 57 deg [1573 K (1300 °C)].[35]

Adding 4.2 wt pct Li to Al produces an angle of about 90 deg [973 K (700 °C)].[72]

Alloying Al with up to ten wt pct Mg yields contact angles of 68 to 136 deg [943 K to 1373 K (670 °C to 1100 °C)].[72,78,103]

Adding 10 to 12 wt pct Si to Al produces angles of 88 to 122 deg [883 K to 1073 K (610 °C to 800 °C)].[63,72,78,102] A study of various compositions in the Al-Si system yielded a minimum angle of 66 deg at Al-70Si (at. pct) with angles of 76 and 98 deg for pure Al and Si, respectively [1723 K (1450 °C)].[25,104]

For the Al-Sn system, 64 deg is the minimum angle (Al-30Sn, at. pct) with angles of 73 and 123 deg for Al and Sn, respectively [1273 K (1000 °C)].[99]

Adding three at. pct Y to Al reduces the contact angle to 69 deg [1573 K (1300 °C)].[35]

Cu-Based Alloys

Pure Cu produces contact angles in the 110 to 170 deg range [1331 K to 1873 K (1058 °C to 1600 °C), see Section V–B–2]. Adding Au to Cu produces a maximum contact angle of 138 deg compared to 130 and 131 deg for Cu and Au, respectively [1365 K (1092 °C)].[98] Incorporating significant amounts of Ti (18 to 26 at. pct) in a Cu-Au alloy (about 20 at. pct Au) resulted in contact angles dropping to 20 to 40 deg [1373 K to 1823 K (1100 °C to 1550 °C)].[38] Another study showed the importance of reducing Au content while increasing Ti content to reduce the contact angle [1323 K to 1423 K (1050 °C to 1150 °C)].[90] With four at. pct Ni present in a Cu-Au-Ti alloy, angles of 20 to 65 deg were achieved with an outlier of 180 deg [1423 K to 1623 K (1150 °C to 1350 °C)].[38]

When assessing Cu-Ni-Ti alloys, it was found that a significant Ti concentration (about 25 at. pct) was necessary to cause a small contact angle (about 25 deg), while the amount of Ni present in the ternary alloy had little effect on the contact angle with small amounts of Ti (5 at. pct or less).[90]

For the Cu-Al-Ti system with 5 at. pct Ti, the contact angle ranged from about 125 to 70 deg [1323 K to 1423 K (1050 °C to 1150 °C)] for concentrations of Al from 2 to 40 at. pct.[90]

Pure Ga yields an angle of 118 or 119 deg [1173 K (900 °C)].[18,22,55] In a Cu-Ga-Ti alloy with 5 at. pct Ti, adding Ga from 2 to 10 at. pct caused oscillatory behavior ranging from about 112 to 146 deg; adding up to 30 at. pct maintained a contact angle of about 125 deg, with a response fairly independent of temperature [1323 K to 1423 K (1050 °C to 1150 °C)].[90]

Adding 15 at. pct Ti to a Cu-Pd alloy yielded an angle of 34 deg [1473 K (1200 °C)].[18]

For the Cu-Sn system, the contact angle reaches a maximum of 149 deg (at 10 at. pct Sn) compared to angles of 141 and 145 deg for Cu and Sn, respectively [1323 K (1050 °C)].[87] The addition of Ti to this system can drastically reduce the contact angle, below 10 deg [1323 K to 1423 K (1050 °C to 1150 °C)], with the simultaneous addition of Sn and Ti being more beneficial than adding much Ti.[87] Another study has shown angles in the 54 to 61 deg range [1173 K to 1213 K (900 °C to 940°C)] for Cu-28.3Sn-5.7Ti (wt pct) and complete spreading [1173 K (900 °C)] for Cu-21Sn-12Ti (wt pct).[93]

The following three Zr-containing alloys produced low contact angles: Cu-Zr (43 deg), Cu-48Zr-7Al (13 deg), and Cu-44Zr-8Al-8Ag (2 deg) [1153 K to 1223 K (880 °C to 950 °C)].[105]

Fe and Fe-Based Alloys

Pure Fe produces contact angles in the 97 to 137 deg range [1823 K to 1913 K (1550 °C to 1640 °C)].[18,19,22,30,53,55,106109] With a sufficient amount of O2 present, the angle dropped to about 69 deg.[108] Adding about 15 at. pct Ti to Fe reduced the angle to 43 deg [1603 K (1330 °C)].[65] In the presence of 1.4 or 3.6 at. pct C, adding Ti up to 10 at. pct produced even lower angles, down to about 25 deg [1823 K (1550 °C)].[110]

Adding between 11 and 21 wt pct Cr yielded angles from about 118 to 99 deg [1823 K (1550 °C)],[111] similar to angles for pure Fe. When O or S is added to a Fe-16Cr alloy (wt pct), the contact angle remains rather high, around 130 to 150 deg.[112,113] Adding 10 wt pct Ni produced angles in the 95 to 135 deg range (1753 K to 1823 K (1480 °C to 1550 °C)].[109]

Ni-Based Alloys

While pure Ni produces contact angles in the 102 to 125 deg range [1473 K to 1973 K (1200 °C to 1700 °C), see Section V–B–1], adding three at. pct Al (or a very small amount of S) reduced the angle to about 95 deg [1773 K (1500 °C)].[62,64] Introducing 25 at. pct Al drops the angle to 75 to 90 deg [1723 K to 1853 K (1450 °C to 1580 °C)], while slight additions of C, up to 0.5 at. pct, maintain an angle in the 70 to 80 deg range.[38] Reducing the Al content to 19 or 14 at. pct, with 4 or 10 at. pct Ti, respectively (to maintain a constant amount of Ni), and a slight amount of B present (0.2 at. pct), maintains an angle of 70 deg [1823 K (1550 °C)].[38] Adding up to 10 at. pct Ti to NiAl reduces the angle to 60 deg.[60] Adding Pt to Ni-Al also reduces the contact angle,[100] though not as significantly as Ti.

Ni-19Fe (at. pct) produces a contact angle of 112 deg [1743 K (1470 °C)].[58,59] Adding a little over 20 pct Cr to the alloy reduces the angle to about 90 deg [1697 K to 1743 K (1424 °C to 1470 °C)].[58,59,65] Making further additions to the Ni-20.7Cr-19.3Fe alloy (at. pct) caused the following changes:[59,65]

  • Si, up to 12 at. pct, caused essentially no change [1538 K to 1608 K (1265 °C to 1335 °C)]

  • Ti, up to 16 at. pct, produced a drastic change, down to about 35 deg [1463 K to 1615 K (1190 °C to 1342 °C)]

  • Introducing both Si and Ti (about 10 and 16 at. pct, respectively) caused a further reduction, down to about 20 deg [1463 K to 1513 K (1190 °C to 1240 °C)]

Ni-45Pd (at. pct) produces a contact angle of about 112 deg.[18,58,95,114] Introducing Ti causes drops in contact angle to three plateaus occurring at about five (95 deg), 15 (70 deg), and 25 at. pct (50 deg).[18,95,114] On the other hand, adding Cr up to 15.5 at. pct had essentially no effect on contact angle.[58]

Two Ni-based alloys and a Co-based alloy (ECY768) produced the following contact angles (see reference for compositions):[115]

  • CMSX486, 83 to 94 deg

  • IN738LC, 84 to 86 deg

  • ECY768, 95 to 99 deg

A few refractory elements have been alloyed with Ni to determine their effect on contact angle. Y was alloyed up to 0.11 wt pct and produced oscillating results in the 387 K to 406 K (114 °C to 133 °C) range [1843 K (1570 °C)].[20] Three other elements, Mo, W, and Zr, produced contact angles of 104, 110, and 75 deg, respectively [1773 K (1500 °C)].[19] An additional experiment of the Mo-Ni system yielded an angle of about 120 deg.[45]

A.5 Miscellaneous Elements and Alloys

Pure Ge produces contact angles of 119 to 150 deg [1213 K to 1363K (940 °C to 1090 °C)] with the contact angle changing over time due to reactions with the substrate.[116] Adding 4.2-4.6 at. pct Si to Ge yielded angles of 114 to 124 deg [1298 K (1025 °C)].[24]

It is difficult to measure the contact angle of Mg due to its propensity to oxidize and/or evaporate. Values of 67 to 94 deg [973 K to 1173 K (700 °C to 900 °C)] were measured.[117] The contact angle of QE22A, a Mg-based alloy (Mg-2.5Ag-2.1Nd-0.7Zr, wt pct), dropped from 120 to 20 deg as the temperature was increased [1023 K to 1123 K (750 °C to 850 °C)].[118]

Pure Mn yields angles of 72 to 108 deg [1573 K to 1833 K (1300 °C to 1560°C)] with the contact angle still decreasing slightly after an hour at higher temperatures.[19,36] Adding five to 40 wt pct Mn to Cu produces contact angles of about 105 deg [1373 K (1100 °C)], regardless of concentration; increasing the temperature to 1573 K (1300 °C) reduces the angle to 78 deg.[119]

Pure Pb produces contact angles of 117 to 132 deg [1023 K to 1193 K (750 °C to 920 °C)].[18,22,55,120]

Pure Pd yields angles in the 104 to 133 deg range [1833 K to 1894 K (1560 °C to 1621 °C)].[53,55,121] Adding significant amounts of Cr (56 to 75 at. pct) reduces the angle to 50 to 75 deg [1823 K to 1973 K (1550 °C to 1700 °C)].[38]

Pure Sb produces contact angles of 92 to 103 deg [998 K (725 °C)].[18,22,55]

For Si, the contact angle is about 80 deg [1723 K (1450 °C)].[18,19,22,55] Various Si alloys achieve contact angle plateaus based on composition [1473 K (1200 °C)]:[122]

  • Au-Si, 85 to 90 deg for 20 to 70 at. pct Si

  • Cu-Si, about 90 deg for 30 to 60 at. pct Si

  • Ni-Si, about 80 deg for 50 to 70 at. pct Si

  • Ge-Si, about 95 deg for 20 to 40 at. pct Si

Also, the Pd-Si system achieved a minimum angle near 85 deg for about 45 at. pct Si [1473 K (1200 °C)].[122] It was also observed that the Au-Si and Pd-Si systems experienced dewetting (contact angle increase with time) after the initial spread.

Pure Sn yields contact angles of 118 to 154 deg [523 K to 1623 K (250 °C to 1350 °C)].[18,22,54,55,120,123] Adding three wt pct Ag to Sn produced an angle of 115 to 120 deg; adding 1 wt pct Ti to the Ag-Sn alloy reduced the angle to 25 to 60 deg [873 K to 1273K (600 °C to 1000 °C)].[124,125] A Sn-3.5Ag-4Ti(Ce,Ga) alloy produced angles from 46 to 67 deg [1073 K to 1173 K (800 °C to 900 °C)].[123] Also, adding 70 pct In to Sn causes an angle of 120 deg.[123]

Pure U yields angles of 72 to 132 deg [1473 K to 1873 K (1200 °C to 1600 °C)].[53]

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Cook, G.O., Sorensen, C.D. Partial Transient Liquid-Phase Bonding, Part I: A Novel Selection Procedure for Determining Ideal Interlayer Combinations, Validated Against Al2O3 PTLP Bonding Experience. Metall Mater Trans A 44, 5732–5753 (2013). https://doi.org/10.1007/s11661-013-1956-8

Download citation

Keywords

  • Contact Angle
  • Sessile Drop
  • Bonding Temperature
  • Isothermal Solidification
  • Interlayer Thickness