Metallurgical and Materials Transactions A

, Volume 44, Issue 13, pp 5732–5753 | Cite as

Partial Transient Liquid-Phase Bonding, Part I: A Novel Selection Procedure for Determining Ideal Interlayer Combinations, Validated Against Al2O3 PTLP Bonding Experience

Article

Abstract

Partial transient liquid-phase (PTLP) bonding is a bonding process that can bond hard-to-join materials, such as ceramics. The process uses a multi-layer interlayer composed of a thick refractory core and thin diffusant layers on each side. Upon heating, the diffusant material melts, and diffusion occurs until the liquid isothermally solidifies. Selecting interlayer materials is a key problem in producing strong, reliable PTLP bonds; materials are usually selected empirically or system by system. This article presents a novel selection procedure that provides a generalized, comprehensive, first-principles-based approach. Components of the selection procedure are linked directly to key characteristics of PTLP bonding. A filtering routine that provides structure for the selection procedure is summarized in this article and detailed in a companion article. Specific capabilities of the routine, such as non-symmetric bonds, add to its effectiveness in identifying additional PTLP bond candidates. By way of example, output from the selection procedure, in conjunction with sessile drop data, is used to analyze all Al2O3 PTLP bonds in the current literature. All analyzed bonds are included in various outputs from the selection procedure, validating its comprehensiveness. Also, Al2O3 PTLP bonds are analyzed as a whole, leading to the identification of important trends that result in increased bond strength. Finally, additional interlayer combinations for PTLP bonding of Al2O3 are presented based on output from the selection procedure and existing sessile drop data.

References

  1. 1.
    G.O. Cook III and C.D. Sorensen: J. Mater. Sci., 2011, vol. 46, pp. 5305–23. DOI:10.1007/s10853-011-5561-1.
  2. 2.
    M.L. Shalz, B.J. Dalgleish, A.P. Tomsia, and A.M. Glaeser: J Mat. Sci., 1993, vol. 28, pp. 1673–1684. doi:10.1007/BF00363367.Google Scholar
  3. 3.
    M.L. Shalz, B.J. Dalgleish, A.P. Tomsia, and A.M. Glaeser: J Mat. Sci., 1994, vol. 29, pp. 3200–3208. doi:10.1007/BF00356663.Google Scholar
  4. 4.
    M.L. Shalz, B.J. Dalgleish, A.P. Tomsia, R.M. Cannon, and A.M. Glaeser: J Mat. Sci., 1994, vol. 29, pp. 3678–3690. doi:10.1007/BF00357335.Google Scholar
  5. 5.
    M.R. Locatelli, A.P. Tomsia, K. Nakashima, B.J. Dalgleish, and A.M. Glaeser: Key. Eng. Mater., 1995, vol. 111–112, pp. 157–190.Google Scholar
  6. 6.
    S.M. Hong, C.C. Bartlow, T.B. Reynolds, J.T. McKeown, and A.M. Glaeser: Adv. Mat., 2008, vol. 20, pp. 4799–4803. doi: 10.1002/adma.200801550.Google Scholar
  7. 7.
    B.J. Dalgleish, A.P. Tomsia, and A.M. Glaeser: Ceram. Trans., 1994, vol. 46, pp. 555–566.Google Scholar
  8. 8.
    S.M. Hong, T.B. Reynolds, C.C. Bartlow, and A.M. Glaeser: Int. J Mat. Res., 2010, vol. 101, pp. 133–142.Google Scholar
  9. 9.
    K. Nishimoto, K. Saida, and Y. Shinohara: Sci. Technol. Weld. Join., 2003, vol. 8, pp. 29–38. doi:10.1179/136217103225008946.Google Scholar
  10. 10.
    G.O. Cook III and C.D. Sorensen: Metall. Mater. Trans. A, 2013. DOI:10.1007/s11661-013-1957-7.
  11. 11.
    T. Gray: The Photographic Periodic Table of the Elements. 2010. http://www.periodictable.com/. Accessed 15 June 2011.
  12. 12.
    H. Okamoto: Desk Handbook: Phase Diagrams for Binary Alloys, ASM International, Materials Park, Ohio, 2000.Google Scholar
  13. 13.
    A. Schnell, A. Stankowski, and E. deMarcos: Proc. GT2006, ASME Turbo Expo 2006: Power Land, Sea, Air, Barcelona, 2006.Google Scholar
  14. 14.
    W.D. Kay: ASM Handbook: welding, brazing, soldering, vol. 6, ASM International, Metals Park, 1993.Google Scholar
  15. 15.
    N.S. Bosco and F.W. Zok: Acta. Mater., 2004, vol. 52, pp. 2965–2972.Google Scholar
  16. 16.
    Z. Li, Y. Zhou, and T.H. North: J Mat. Sci., 1995, vol. 30, pp. 1075–1082. doi:10.1007/BF01178448.Google Scholar
  17. 17.
    Y. Zhou, W.F. Gale, and T.H. North: Int. Mater. Rev., 1995, vol. 40, pp. 181–196.Google Scholar
  18. 18.
    N. Eustathopoulos and B. Drevet: Mat. Res. Soc. Symp. Proc., 1993, vol. 314, pp. 15–26.Google Scholar
  19. 19.
    J.E. McDonald and J.G. Eberhart: Trans. Metall. Soc. AIME., 1965, vol. 233, pp. 512–517.Google Scholar
  20. 20.
    R.M. Crispin and M. Nicholas: J Mater. Sci., 1976, vol. 11, pp. 17–21.Google Scholar
  21. 21.
    G.O. Cook III: Ph.D. Dissertation, Brigham Young University, 2011.Google Scholar
  22. 22.
    N. Eustathopoulos and B. Drevet: Mater. Sci. Eng., 1998, vol. 249, pp. 176–183.Google Scholar
  23. 23.
    N. Sobczak, M. Singh, and R. Asthana: Curr. Opin. Solid. State. Mater. Sci., 2005, vol. 9, pp. 241–253. doi:10.1016/j.cossms.2006.07.007.Google Scholar
  24. 24.
    A. Cröll, N. Salk, F.R. Szofran, S.D. Cobb, and M.P. Volz: J Cryst. Growth., 2002, vol. 242, pp. 45–54.Google Scholar
  25. 25.
    P. Shen, H. Fujii, and K. Nogi: Mater. Trans., 2004, vol. 45, pp. 2857–2863.Google Scholar
  26. 26.
    P. Shen, H. Fujii, T. Matsumoto, and K. Nogi: J Mater. Sci., 2005, vol. 40, pp. 2329–2333.Google Scholar
  27. 27.
    T.E. O’Brien and A.C.D. Chaklader: J Am. Ceram. Soc., 1974, vol. 57, pp. 329–332.Google Scholar
  28. 28.
    J. Schmitz, J. Brillo, and I. Egry: J Mater. Sci., 2010, vol. 45, pp. 2144–2149. doi:10.1007/s10853-010-4212-2.Google Scholar
  29. 29.
    K. Nogi: Scr. Mater., 2010, vol. 62, pp. 945–948. doi:10.1016/j.scriptamat.2010.03.007.Google Scholar
  30. 30.
    L. Zhao and V. Sahajwalla: ISIJ. Int., 2003, vol. 43, pp. 1–6.Google Scholar
  31. 31.
    S.K. Rhee: J Am. Ceram. Soc., 1971, vol. 54, pp. 376–379.Google Scholar
  32. 32.
    E. Saiz, R.M. Cannon, and A.P. Tomsia: Annu. Rev. Mater. Res., 2008, vol. 38, pp. 197–226.Google Scholar
  33. 33.
    A. Meier, P.R. Chidambaram, and G.R. Edwards: J Mater. Sci., 1995, vol. 30, pp. 3791–3798.Google Scholar
  34. 34.
    M. Naka, Y. Hirono, and I. Okamoto: Trans. JWRI., 1984, vol. 13, pp. 29–34.Google Scholar
  35. 35.
    E. Rocha-Rangel, P.F. Becher, and E. Lara-Curzio: Mater. Sci. Forum., 2003, vol. 442, pp. 97–102.Google Scholar
  36. 36.
    N. Shinozaki, N. Fukami, H. Kaku, and K. Mukai: J Japan. Inst. Metals., 1999, vol. 63, pp. 1009–1014.Google Scholar
  37. 37.
    S.P. Mehrotra and A.C.D. Chaklader: Metall. Trans. B, 1985, vol. 16B, pp. 567–575.Google Scholar
  38. 38.
    A.J. Moorhead: Adv. Ceram. Mater., 1987, vol. 2, pp. 159–166.Google Scholar
  39. 39.
    N. Sobczak, R. Asthana, M. Ksiazek, W. Radziwill, and B. Mikulowski: Metall. Mater. Trans. A, 2004, vol. 35A, pp. 911–923.Google Scholar
  40. 40.
    M.R. Locatelli, B.J. Dalgleish, K. Nakashima, A.P. Tomsia, and A.M. Glaeser: Ceram. Int., 1997, vol. 23, pp. 313–322.Google Scholar
  41. 41.
    M.R. Locatelli, B.J. Dalgleish, A.P. Tomsia, A.M. Glaeser, H. Mastumoto, and K. Nakashima: 4th Eur. Ceram. Soc. Conf. Vol. 9 Coatings, Riccione, 1995.Google Scholar
  42. 42.
    M.R. Locatelli, K. Nakashima, B.J. Dalgleish, A.P. Tomsia, and A.M. Glaeser: Adv. Ceram. Matrix Compos. II Proc. Sympos. ACS 96th Annu. Meet., Indianapolis, 1994.Google Scholar
  43. 43.
    M. Ksiazek, M. Richert, A. Tchorz, and L. Boron: J Mat. Eng. Perform., 2011, vol. 21, pp. 690–695.Google Scholar
  44. 44.
    B.J. Dalgleish, A.P. Tomsia, K. Nakashima, M.R. Locatelli, and A.M. Glaeser: Scr. Metall. Mater., 1994, vol. 31, pp. 1043–1048.Google Scholar
  45. 45.
    S.M. Hong: Ph.D. Dissertation, University of California, Berkeley, 2009.Google Scholar
  46. 46.
    M. Ksiazek, N. Sobczak, B. Mikulowski, W. Radziwill, B. Winiarski, and M. Wojcik: J Mat. Sci., 2005, vol. 40, pp. 2513–2517. doi:10.1007/s10853-005-1984-x.Google Scholar
  47. 47.
    R.A. Marks, J.D. Sugar, and A.M. Glaeser: J Mater. Sci., 2001, vol. 36, pp. 5609–5624.Google Scholar
  48. 48.
    S.M. Hong and A.M. Glaeser: Proc. 3rd Int. Brazing Solder. Conf., Crowne Plaza Riverwalk Hotel, San Antonio, TX, 2006.Google Scholar
  49. 49.
    K. Nakashima, T. Makino, K. Mori, and A.M. Glaeser: J Mater. Synth. Process., 1998, vol. 6, pp. 271–277.Google Scholar
  50. 50.
    H. Matsumoto, M.R. Locatelli, K. Nakashima, A.M. Glaeser, and K. Mori: Mater. Trans. JIM., 1995, vol. 36, pp. 555–564.Google Scholar
  51. 51.
    J. Sugar, J. McKeown, T. Akashi, S. Hong, K. Nakashima, and A.M. Glaeser: J Eur. Ceram. Soc., 2006, vol. 26, pp. 363–372.Google Scholar
  52. 52.
    S.M. Hong: M.S. Thesis, University of California, Berkeley, 2006.Google Scholar
  53. 53.
    M. Nicholas: J Mater. Sci., 1968, vol. 3, pp. 571–576.Google Scholar
  54. 54.
    K. Nogi, K. Oishi, and K. Ogino: J Japan. Inst. Met., 1988, vol. 52, pp. 72–78.Google Scholar
  55. 55.
    N. Eustathopoulos, B. Drevet, and M.L. Muolo: Mater. Sci. Eng. A, 2001, vol. 300, pp. 34–40.Google Scholar
  56. 56.
    J. Lee, H. Ishimura, and T. Tanaka: Scr. Mater., 2006, vol. 54, pp. 1369–1373. doi:10.1016/j.scriptamat.2005.12.006.Google Scholar
  57. 57.
    A.C.D. Chaklader, W.W. Gill, and S.P. Mehrotra: Surfaces and Interfaces in Ceramic and Ceramic-Metal Systems, Material Science Research, vol. 14, Plenum Press, New York, 1981, pp. 421–432.Google Scholar
  58. 58.
    P. Kritsalis, V. Merlin, L. Coudurier, and N. Eustathopoulos: Acta. Metall. Mater., 1992, vol. 40, pp. 1167–1175.Google Scholar
  59. 59.
    C. Wan, P. Kritsalis, B. Drevet, and N. Eustathopoulos: Mater. Sci. Eng. A, 1996, vol. 207, pp. 181–187.Google Scholar
  60. 60.
    J.F. Silvain, J.C. Bihr, and J. Douin: Composites Part. A, 1998, vol. 29A, pp. 1175–1183.Google Scholar
  61. 61.
    G. Levi, C. Scheu, and W.D. Kaplan: Interface. Sci., 2001, vol. 9, pp. 213–220.Google Scholar
  62. 62.
    G. Levi, D.R. Clarke, and W.D. Kaplan: Interface. Sci., 2004, vol. 12, pp. 73–83.Google Scholar
  63. 63.
    N. Eustathopoulos, N. Sobczak, A. Passerone, and K. Nogi: J Mater. Sci., 2005, vol. 40, pp. 2271–2280.Google Scholar
  64. 64.
    G. Levi and W.D. Kaplan: J Mater. Sci., 2006, vol. 41, pp. 817–821. doi:10.1007/s10853-006-6565-0.Google Scholar
  65. 65.
    W.A.N. Chuangeng, P. Kritsalis, and N. Eustathopoulos: J Mater. Sci. Technol., 1994, vol. 10, pp. 466–468.Google Scholar
  66. 66.
    J.X. Zhang, R.S. Chandel, and H.P. Seow: Int. J Mod. Phys. B, 2002, vol. 16, pp. 50–56.Google Scholar
  67. 67.
    P. Shen, H. Fujii, and K. Nogi: J Mater. Res., 2005, vol. 20, pp. 940–951.Google Scholar
  68. 68.
    K. Sang, L. Weiler, and E. Aulbach: Ceram. Int., 2010, vol. 36, pp. 719–726. doi:10.1016/j.ceramint.2009.11.005.Google Scholar
  69. 69.
    T.B. Reynolds, C.C. Bartlow, S.M. Hong, and A.M. Glaeser: Supplemental Proceedings: General Paper Selections, vol. 3, TMS, 2009, p. 645.Google Scholar
  70. 70.
    P.D. Ownby and K.W.K. Li: J Am. Ceram. Soc., 1991, vol. 74, pp. 1275–1281.Google Scholar
  71. 71.
    D.J. Wang and S.T. Wu: Acta. Metall. Mater., 1994, vol. 42, pp. 4029–4034.Google Scholar
  72. 72.
    H. Miyahara, R. Muraoka, N. Mori, and K. Ogi: J Japan. Inst. Metals., 1995, vol. 59, pp. 660–665.Google Scholar
  73. 73.
    G. Levi and W.D. Kaplan: Mat. Res. Soc. Symp. Proc. 2001. vol. 654. pp. AA4.6.1–AA4.6.10.Google Scholar
  74. 74.
    G. Levi and W.D. Kaplan: Acta. Mater., 2003, vol. 51, pp. 2793–2802. doi:10.1016/S1359-6454(03)00084-3.Google Scholar
  75. 75.
    E. Saiz, A.P. Tomsia, and K. Suganuma: J Eur. Ceram. Soc., 2003, vol. 23, pp. 2787–2796. doi:10.1016/S0955-2219(03)00290-5.Google Scholar
  76. 76.
    P. Shen, H. Fujii, T. Matsumoto, and K. Nogi: J Am. Ceram. Soc., 2004, vol. 87, pp. 2151–2159.Google Scholar
  77. 77.
    A. Sangghaleh and M. Halali: J Mater. Process. Technol., 2008, vol. 197, pp. 156–160. doi:10.1016/j.jmatprotec.2007.06.024.Google Scholar
  78. 78.
    A.J. Klinter, G. Mendoza–Suarez, and R.A.L. Drew: Mater. Sci. Eng. A, 2008, vol. 495, pp. 147–152. doi:10.1016/j.msea.2007.10.113.Google Scholar
  79. 79.
    J. Aguilar-Santillan: Metall. Mater. Trans. B, 2009, vol. 40B, pp. 376–387. doi:10.1007/s11663-009-9237-z.Google Scholar
  80. 80.
    P. Shen, X.H. Zheng, Q.L. Lin, D. Zhang, and Q.C. Jiang: Metall. Mater. Trans. A, 2009, vol. 40A, pp. 444–449. doi:10.1007/s11661-008-9718-8.Google Scholar
  81. 81.
    J. Aguilar-Santillan: Metall. Mater. Trans. A, 2010, vol. 41A, pp. 676–685. doi:10.1007/s11661-009-0144-3.Google Scholar
  82. 82.
    A.J. Klinter, C.A. Leon-Patiño, and R.A.L. Drew: Acta. Mater., 2010, vol. 58, pp. 1350–1360. doi:10.1016/j.actamat.2009.10.040.Google Scholar
  83. 83.
    M. Ksiazek, B. Mikulowski, and M. Richert: J Mater. Sci., 2010, vol. 45, pp. 2194–2202. doi:10.1007/s10853-010-4214-0.Google Scholar
  84. 84.
    M.L. Muolo, F. Valenza, A. Passerone, and D. Passerone: Mater. Sci. Eng. A, 2008, vol. 495, pp. 153–158. doi:10.1016/j.msea.2007.06.101.Google Scholar
  85. 85.
    D.S. Yan and S. Blairs: Proc. AUSTCERAM 80, Ninth Aust. Ceram. Conf. Sydney, Australia. 1980. p. 319.Google Scholar
  86. 86.
    O. Kozlova, R. Voytovych, and N. Eustathopoulos: Scr. Mater., 2011, vol. 65, pp. 13–16. doi:10.1016/j.scriptamat.2011.03.026.Google Scholar
  87. 87.
    R. Standing and M. Nicholas: J Mater. Sci., 1978, vol. 13, pp. 1509–1514.Google Scholar
  88. 88.
    L. Espié, B. Drevet, and N. Eustathopoulos: Metall. Mater. Trans. A, 1994, vol. 25A, pp. 599–605.Google Scholar
  89. 89.
    P.R. Chidambaram, A. Meier, and G.R. Edwards: Mater. Sci. Eng. A, 1996, vol. 206, pp. 249–258.Google Scholar
  90. 90.
    M.G. Nicholas, T.M. Valentine, and M.J. Waite: J Mater. Sci., 1980, vol. 15, pp. 2197–2206.Google Scholar
  91. 91.
    R.E. Loehman, F.M. Hosking, B. Gauntt, and P.G. Kotula: J Mater. Sci., 2005, vol. 40, pp. 2319–2324.Google Scholar
  92. 92.
    X.M. Xue, Z.T. Sui, and J.T. Wang: J Mater. Sci. Lett., 1992, vol. 11, pp. 1514–1517.Google Scholar
  93. 93.
    C.C. Lin, R.B. Chen, and R.K. Shiue: J Mater. Sci., 2001, vol. 36, pp. 2145–2150.Google Scholar
  94. 94.
    R. Voytovych, L.Y. Ljungberg, and N. Eustathopoulos: Scr. Mater., 2004, vol. 51, pp. 431–435. doi:10.1016/j.scriptamat.2004.05.002.Google Scholar
  95. 95.
    R. Voytovych, F. Robaut, and N. Eustathopoulos: Acta. Mater., 2006, vol. 54, pp. 2205–2214. doi:10.1016/j.actamat.2005.11.048.Google Scholar
  96. 96.
    B. Gibbesch, G. Elssner, and G. Petzow: Biomater., 1992, vol. 13, pp. 455–461.Google Scholar
  97. 97.
    A. Ureña, J.M. Gómez de Salazar, and J. Quiñones: J Mater. Sci., 1992, vol. 27, pp. 599–606.Google Scholar
  98. 98.
    V. Ghetta, J. Fouletier, and D. Chatain: Acta. Mater., 1996, vol. 44, pp. 1927–1936.Google Scholar
  99. 99.
    J.G. Li, D. Chatain, L. Coudurier, and N. Eustathopoulos: J Mater. Sci. Lett., 1988, vol. 7, pp. 961–963.Google Scholar
  100. 100.
    A. Gauffier, E. Saiz, A.P. Tomsia, and P.Y. Hou: J Mater. Sci., 2007, vol. 42, pp. 9524–9528. doi:10.1007/s10853-007-2093-9.Google Scholar
  101. 101.
    M. Naka, Y. Hirono, and I. Okamoto: Trans. JWRI., 1987, vol. 16, pp. 81–87.Google Scholar
  102. 102.
    A.J. Klinter and R.A.L. Drew: MetFoam. Proc. Fifth Int. Conf. Porous Met. Metall. Foams. 2007. p. 23.Google Scholar
  103. 103.
    A. Sangghaleh and M. Halali: Appl. Surf. Sci., 2009, vol. 255, pp. 8202–8206. doi:10.1016/j.apsusc.2009.05.044.Google Scholar
  104. 104.
    P. Shen, H. Fujii, T. Matsumoto, and K. Nogi: J Am. Ceram. Soc., 2005, vol. 88, pp. 912–917. doi:10.1111/j.1551-2916.2005.00180.x.Google Scholar
  105. 105.
    G.F. Ma, H.F. Zhang, H. Li, and Z.Q. Hu: J Alloys. Compd., 2008, vol. 462, pp. 343–346. doi:10.1016/j.jallcom.2007.08.049.Google Scholar
  106. 106.
    K. Nakashima, K. Takihira, K. Mori, and N. Shinozaki: Mater. Trans. JIM., 1992, vol. 33, pp. 918–926.Google Scholar
  107. 107.
    E. Kapilashrami, A. Jakobsson, A.K. Lahiri, and S. Seetharaman: Metall. Mater. Trans. B, 2003, vol. 34B, pp. 193–199.Google Scholar
  108. 108.
    E. Kapilashrami and S. Seetharaman: J Mater. Sci., 2005, vol. 40, pp. 2371–2375.Google Scholar
  109. 109.
    M. Shin, J. Lee, and J.H. Park: ISIJ. Int., 2008, vol. 48, pp. 1665–1669.Google Scholar
  110. 110.
    M. Gelbstein, N. Froumin, and N. Frage: Mater. Sci. Eng. A, 2008, vol. 495, pp. 159–163. doi:10.1016/j.msea.2007.10.100.Google Scholar
  111. 111.
    J. Lee, M. Shin, J.H. Park, and S. Seetharaman: Ironmak. Steelmak., 2010, vol. 37, pp. 512–515.Google Scholar
  112. 112.
    K. Mukai, Z. Li, and M. Zeze: Mater. Trans., 2002, vol. 43, pp. 1724–1731.Google Scholar
  113. 113.
    Z. Li, M. Zeze, and K. Mukai: Mater. Trans., 2003, vol. 44, pp. 2108–2113.Google Scholar
  114. 114.
    P. Kritsalis, B. Drevet, N. Valignat, and N. Eustathopoulos: Scr. Metall. Mater., 1994, vol. 30, pp. 1127–1132.Google Scholar
  115. 115.
    F. Valenza, M.L. Muolo, and A. Passerone: J Mater. Sci., 2010, vol. 45, pp. 2071–2079. doi:10.1007/s10853-009-3801-4.Google Scholar
  116. 116.
    N. Kaiser, A. Cröll, F.R. Szofran, S.D. Cobb, and K.W. Benz: J Cryst. Growth., 2001, vol. 231, pp. 448–457.Google Scholar
  117. 117.
    P. Shen, D. Zhang, Q.L. Lin, L.X. Shi, and Q.C. Jiang: Metall. Mater. Trans. A, 2010, vol. 41A, pp. 1621–1626. doi:10.1007/s11661-010-0224-4.Google Scholar
  118. 118.
    C. Fritze and G. Nientit: J Mater. Sci. Lett., 1995, vol. 14, pp. 464–466.Google Scholar
  119. 119.
    A. Meier, V. Gabriel, P.R. Chidambaram, and G.R. Edwards: Mater. Manuf. Process., 1995, vol. 10, pp. 625–641.Google Scholar
  120. 120.
    I. Rivollet, D. Chatain, and N. Eustathopoulos: J Mater. Sci., 1990, vol. 25, pp. 3179–3185.Google Scholar
  121. 121.
    H. Taimastu, T. Tani, and H. Kaneko: J Mater. Sci., 1996, vol. 31, pp. 6383–6387.Google Scholar
  122. 122.
    Y.V. Naidich, V.V. Poluyanskaya, V.M. Puzikov, and A.Y. Danko: Powder. Metall. Met. Ceram., 2006, vol. 45, pp. 468–475.Google Scholar
  123. 123.
    R. Kolenak, P. Sebo, M. Provaznik, M. Kolenakova, and K. Ulrich: Mater. Des., 2011, vol. 32, pp. 3997–4003. doi:10.1016/j.matdes.2011.03.022.Google Scholar
  124. 124.
    L. Gremillard, E. Saiz, J. Chevalier, and A.P. Tomsia: Int. J. Mater. Res. Adv. Tech., 2004, vol. 95, pp. 261–265.Google Scholar
  125. 125.
    L. Gremillard, E. Saiz, V.R. Radmilovic, and A.P. Tomsia: J Mater. Res., 2006, vol. 21, pp. 3222–3233.Google Scholar

Copyright information

© The Minerals, Metals & Materials Society and ASM International 2013

Authors and Affiliations

  1. 1.Ira A. Fulton College of Engineering and TechnologyBrigham Young UniversityProvoUSA
  2. 2.Pratt & WhitneyEast HartfordUSA

Personalised recommendations