Skip to main content
Log in

Influence of CO2-Ar Mixtures as Shielding Gas on Laser Welding of Al-Mg Alloys

  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

In this study, AA5083 samples were butt welded under a conduction regime with high-power diode laser (HPDL). Various mixtures composed of Ar and CO2 were used as a shielding gas. The influence of the shielding gas composition on the microstructure and on the properties of laser welds was analyzed. The weld beads were deeply characterized by metallographic/microstructural studies, X-ray diffraction (XRD), X-ray energy dispersive spectrometry (X-EDS) chemical analyses, X-ray photoelectron spectra (XPS), microhardness, and tensile strength. The corrosion resistance of laser-remelted surfaces with different CO2/Ar ratios was also estimated by means of electrochemical tests. The addition of CO2 to the shielding gas results in a better weld penetration and oxidizes the weld pool surface. This addition also promotes the migration of Mg toward the surface of weld beads and induces the formation of magnesium aluminates spinel on the welds. The best corrosion resistance result is achieved with 20 pct CO2. The overall results indicate that the addition of small percentage of CO2 to Ar leads to improvements of the mechanical and corrosion properties of the aluminum welds.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17

Similar content being viewed by others

References

  1. J.M. Sánchez-Amaya, M.R. Amaya-Vázquez, and F.J. Botana: Handbook of Laser Welding Technologies, 1st ed., Woodhead Publishing, Cambridge, U.K., 2013, pp. 215–8.

    Book  Google Scholar 

  2. F. Matsuda and K. Nakata: Trans. JWRI., 1995, vol. 24, no. 1, pp. 83–94.

    Google Scholar 

  3. W. van Haver, X. Stassart, J. Verwimp, B. De Meester, and A. Dhooge: Weld. World, 2006, vol. 50 (11–12), pp. 65–77.

  4. U. Dilthey, A. Brandenburg, and F. Reich: Weld. World, 2006, vol. 50 (7–8), pp. 7–10.

  5. F.S. Bayraktar and P.S. Staron: Weld. World, 2007, vol. 51 (1–2), pp. 28–34.

  6. H. Zhao and T. DebRoy: Metall. Mater. Trans. B, 2001, vol. 32B, pp. 163–72.

    Article  CAS  Google Scholar 

  7. Y. Shi, F. Zhonga, X. Li, S. Gong, and L. Chen: Mater. Sci. Eng. A, 2007, vol. 465, pp. 153–9.

    Article  Google Scholar 

  8. P. Bassani, E. Capello, D. Colombo, B. Previtali, and M. Vedani: Compos. Part. A, 2007, vol. 38, pp. 1089–98.

    Article  Google Scholar 

  9. R. Spina, L. Tricarico, G. Basile, and T. Sibillano: J. Mater. Proc. Tech., 2007, vol. 191, pp. 215–9.

    Article  CAS  Google Scholar 

  10. A. Ancona, T. Sibillano, L. Tricarico, R. Spina, P.M. Lugara, G. Basile, and S. Schiavone: J. Mater. Proc. Tech., 2005, vols. 164-5, pp. 971–7.

    Article  Google Scholar 

  11. T. Sibillano, A. Ancona, V. Berardia, E. Schingaro, G. Basilea, and P.M. Lugara: Opt. Lasers Eng., 2006, vol. 44, pp. 1039–51.

    Article  Google Scholar 

  12. L. Tricarico, R. Spina, D. Sorgente, A. Ancona, T. Sibillano, and G. Basile: Key Eng. Mater., 2007, vol. 344, pp. 745–50.

    Article  Google Scholar 

  13. A. Haboudou, P. Peyre, A.B. Vannes, and G. Peix: Mater. Sci. Eng. A, 2003, vol. 363, pp. 40–52.

    Article  Google Scholar 

  14. E. AssunÇao, S. Williams, and D. Yapp: Opt. Lasers Eng., 2012, vol. 50, pp. 823–8.

    Article  Google Scholar 

  15. R. Akhter, L. Ivanchev, and H.P. Burger: Mater. Sci. Eng. A, 2007, vol. 447, pp. 192–6.

    Article  Google Scholar 

  16. J.M. Sánchez-Amaya, T. Delgado, J.J. De Damborenea, V. López, and F.J. Botana: Sci. Technol. Weld. Joi., 2009, vol. 14, no. 1, pp. 78–86.

    Article  Google Scholar 

  17. J.M. Sánchez-Amaya, T. Delgado, L. González-Rovira, and F.J. Botana: Appl. Surf. Sci., 2009, vol. 255, no. 23, pp. 9512–21.

    Article  Google Scholar 

  18. N. Abe, M. Tsukamoto, K. Maeda, K. Namba, and J. Morimoto: J. Laser Appl., 2006, vol. 18, no. 4, pp. 289–93.

    Article  CAS  Google Scholar 

  19. K. Howard, S. Lawson, and Y. Zhou: Weld. J., 2006, vol. 85, no. 5, pp. 101–10.

    Google Scholar 

  20. J.M. Sánchez-Amaya, Z. Boukha, L. González-Rovira, J. Navas, J. Martín-Calleja, and F.J. Botana: J. Laser Appl., 2012, vol. 24, no. 1, pp. 012002–9.

    Article  Google Scholar 

  21. J.M. Sánchez-Amaya, Z. Boukha, M.R. Amaya-Vázquez, and F.J. Botana: Weld. J., 2012, vol. 91, no. 5, pp. 155–61.

    Google Scholar 

  22. T. Nacey: Weld. J., 2001, vol. 6, pp. 28–30.

    Google Scholar 

  23. L. Li: Opt. Laser. Eng., 2000, vol. 34, pp. 231–53.

    Article  Google Scholar 

  24. H. Wang, Y. Shi, S. Gong, and A. Duan: J. Mater. Process. Tech., 2007, vol. 184, pp. 379–85.

    Article  CAS  Google Scholar 

  25. E. Akman, A. Demir, T. Canel, and T. Sınmazcelik: J. Mater. Process. Tech., 2009, vol. 209, pp. 3705–13.

    Article  CAS  Google Scholar 

  26. L. Shanping, F. Hidetoshi, and N. Kiyoshi: ISIJ Int., 2005, vol. 45, no. 1, pp. 66–70.

    Article  Google Scholar 

  27. B.E. Paton: Avtom. Svarka., 1974, vol. 6, pp. 1–7.

    Google Scholar 

  28. W.S. Bennett and G.S. Mills: Weld. J., 1974, vol. 53, pp. 548–53.

    Google Scholar 

  29. B.G. Chung, S. Rhee, and C.H. Lee: Mater. Sci. Eng. A-Struct., 1999, vol. 272, no. 2, pp. 357–62.

    Article  Google Scholar 

  30. S. Katayama, H. Nagayama, M. Mizutani, and Y. Kawahito: Weld. Int., 2009, vol. 23, no. 10, pp. 744–52.

    Article  Google Scholar 

  31. A. Matsunawa, S. Katayama, and K. Kojima: Weld. Res. Abroad, 1999, vol. 45, no. 8, pp. 2–11.

    Google Scholar 

  32. G. Tani, A. Ascari, G. Campana, and A. Fortunato: Appl. Surf. Sci., 2007, vol. 254, no. 4, pp. 904–7.

    Article  CAS  Google Scholar 

  33. W.F. Savage, E.F. Nippes, and G.M. Goodwin: Weld. J., 1977, vol. 56, pp. 126–32.

    Google Scholar 

  34. C.R. Heiple and J.R. Roper: Weld. J., 1981, vol. 60, pp. 143–5.

    Google Scholar 

  35. Y. Takeuchi, R. Takagi, and T. Shinoda: Weld. J., 1992, vol. 71, pp. 2839.

    Google Scholar 

  36. D.H. Abbott and C.E. Albright: J. Laser. Appl., 1994, vol. 6, no. 2, pp. 6980.

    Article  CAS  Google Scholar 

  37. L. Shanping, F. Hidetoshi, and N. Kiyoshi: Metall. Mater. Trans. A, 2004, vol. 35A, pp. 2861–7.

    Google Scholar 

  38. M.J. Tobar, I.M. Lamas, A. Yáñez, J.M. Sánchez-Amaya, Z. Boukha, and F.J. Botana: Phys. Procedia, 2010, vol. 5, no. 2, pp. 299–308.

    Article  CAS  Google Scholar 

  39. J.M. Sánchez-Amaya, Z. Boukha, M.R. Amaya-Vázquez, L. González-Rovira, and F.J. Botana: Mater. Sci. Forum, 2012, vol. 713, pp. 7–12.

    Article  Google Scholar 

  40. J.M. Sánchez-Amaya, Z. Boukha, L. González-Rovira, M.R. Amaya-Vázquez, and F.J. Botana: Adv. Mater. Res., 2012, vol. 498, pp. 37–42.

    Article  Google Scholar 

  41. ASTM E-384, “Standard Test Method for Micro-indentation Hardness of Materials”, 1999.

  42. M. Mohai: Surf. Interface Anal., 2004, vol. 36, pp. 828–32.

    Article  CAS  Google Scholar 

  43. C.J. Powell and A. Jablonski: NIST Electron-Effective-Attenuation Length Database, Version 1.3, SRD 82, National Institute of Standards and Technology, Gaithersburg, MD, 2011, pp. 24–25.

  44. M. Tsuji, T. Yamamoto, Y. Tamaura, T. Kodama, and Y. Kitayama: Appl. Catal. A: Gen., 1996, vol. 142, pp. 31–45.

    Article  CAS  Google Scholar 

  45. C.R. Heiple and J.R. Roper: Weld. J., 1982, vol. 61, pp. 97–102.

    Google Scholar 

  46. A. Aballe, M. Bethencourt, F.J. Botana, M. Marcos, and J.M. Sánchez-Amaya: Corros. Sci., 2004, vol. 46, pp. 1909–20.

    Article  CAS  Google Scholar 

  47. A. Aballe, M. Bethencourt, F.J. Botana, M.J. Cano, and M. Marcos: Corros. Sci., 2001, vol. 43, pp. 1657–74.

    Article  CAS  Google Scholar 

  48. R. Naghizadeha, H.R. Rezaie, and F. Golestani-Fard: Ceram. Int., 2011, vol. 37, no. 1, pp. 349–54.

    Article  Google Scholar 

  49. B.R. Strohmeier: Surf. Interf. Anal., 1990, vol. 15, pp. 51–6.

    Article  CAS  Google Scholar 

  50. S.O. Saied and J.L. Sullivan: J. Phys. Condens. Mater., 1993, vol. 5, pp. 165–6.

    Article  Google Scholar 

  51. J.M. Sánchez-Amaya, G. Blanco, F.J. Garcia-Garcia, M. Bethencourt, and F.J. Botana: Surf. Coat. Tech., 2012, vol. 213, pp. 105–16.

    Article  Google Scholar 

  52. F.J. Garcia-Garcia, E.V. Koroleva, G.E. Thompson, and G.C. Smith: Surf. Interface Anal., 2010, vol. 42, pp. 258–63.

    Article  CAS  Google Scholar 

  53. P. Sahoo, T. DebRoy, and M.J. McNallan: Metall. Trans. B., 1988, vol. 19B, pp. 483–91.

    Article  CAS  Google Scholar 

  54. K. Ishizaki, N. Araki, and H. Murai: J. Jpn. Weld. Soc., 1965, vol. 34, pp. 146–53.

    Article  Google Scholar 

  55. L. Shanping, F. Hidetoshi, and N. Kiyoshi: J. Mater. Sci., 2005, vol. 40, pp. 2481–5.

    Article  Google Scholar 

  56. L. Shanping, F. Hidetoshi, T. Manabu, and N. Kiyoshi: Trans. JWRI., 2004, vol. 33, no. 1, pp. 5–9.

    Google Scholar 

  57. S. Hassanifard and M. Zehsaz: Procedia Eng., 2010, vol. 2, pp. 1077–85.

    Article  Google Scholar 

Download references

Acknowledgments

The current work has been financially supported by the Ministerio de Educación y Ciencia (project DELATIAL, Ref. MAT2008-06882-C04-02) and by the Junta de Andalucía (project SOLDATIA, Ref. TEP 6180).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to José María Sánchez-Amaya.

Additional information

Manuscript submitted February 14, 2013.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Boukha, Z., Sánchez-Amaya, J.M., González-Rovira, L. et al. Influence of CO2-Ar Mixtures as Shielding Gas on Laser Welding of Al-Mg Alloys. Metall Mater Trans A 44, 5711–5723 (2013). https://doi.org/10.1007/s11661-013-1953-y

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-013-1953-y

Keywords

Navigation