Skip to main content

High-Temperature Creep and Oxidation Behavior of Mo-Si-B Alloys with High Ti Contents

Abstract

Multiphase alloys in the Mo-Si-B system are potential high-temperature structural materials due to their good oxidation and creep resistance. Since they suffer from relatively high densities, the current study focuses on the influence of density-reducing Ti additions on creep and oxidation behavior at temperatures above 1273 K (1000 °C). Two alloys with compositions of Mo-12.5Si-8.5B-27.5Ti and Mo-9Si-8B-29Ti (in at. pct) were synthesized by arc melting and then homogenized by annealing in vacuum for 150 hours at 1873 K (1600 °C). Both alloys show similar creep behavior at stresses of 100 to 300 MPa and temperatures of 1473 K and 1573 K (1200 °C and 1300 °C), although they possess different intermetallic volume fractions. They exhibit superior creep resistance and lower density than a state-of-the-art Ni-base superalloy (single-crystalline CMSX-4) as well as other Mo-Si-B alloys. Solid solution strengthening due to Ti was confirmed by Vickers hardness measurements and is believed to be the reason for the significant increase in creep resistance compared to Mo-Si-B alloys without Ti, but with comparable microstructural length scales. The addition of Ti degrades oxidation resistance relative to a Mo-9Si-8B reference alloy due to the formation of a relatively porous duplex layer with titania matrix enabling easy inward diffusion of oxygen.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

References

  1. D. M. Dimiduk and J. H. Perepezko: MRS Bulletin, 2003, vol. 28, pp. 639–45.

    Article  Google Scholar 

  2. J. Sato, T. Omori, K. Oikawa, I. Ohnuma, R. Kainuma, and K. Ishida: Science, 2006, vol. 312, pp. 90–91.

    Article  Google Scholar 

  3. B. P. Bewlay, M. R. Jackson, J.-C. Zhao, P. R. Subramanian, M. G. Mendiratta, and J. J. Lewandowski: MRS Bulletin, 2003, vol. 28, pp. 646–53.

    Article  Google Scholar 

  4. P. Jéhanno, M. Heilmaier, H. Kestler, M. Böning, A. Venskutonis, B. Bewlay and M. Jackson: Metall. Mater. Trans. A, 2005, 36A: 515–23.

    Article  Google Scholar 

  5. J. H. Schneibel, C. T. Liu, D. S. Easton, and C. A. Carmichael: Mater. Sci. Eng. A, 1999, vol. 261, pp. 78–83.

    Article  Google Scholar 

  6. D.M. Berczik: US Patents 5,595,616 and 5,693156, 1997.

  7. H. Choe, D. Chen, J. H. Schneibel, and R. O. Ritchie: Intermetallics, 2001, vol. 9, pp. 319–29.

    Article  Google Scholar 

  8. T. A. Parthasarathy, M. G. Mendiratta, and D. M. Dimiduk: Acta Mater., 2002, vol. 50, pp. 1857–68.

    Article  Google Scholar 

  9. P. Jéhanno, M. Heilmaier, and H. Kestler: Intermetallics, 2004, vol. 12, pp. 1005–09.

    Article  Google Scholar 

  10. G. Erickson: JOM, 1995, vol. 47, pp. 36–39.

    Article  Google Scholar 

  11. Y. Yang, Y. A. Chang, L. Tan, and W. Cao: Acta Materialia, 2005, vol. 53, pp. 1711–20.

    Article  Google Scholar 

  12. R. Sakidja and J. H. Perepezko: J. Nucl. Mater., 2007, vol. 366, pp. 407–16.

    Article  Google Scholar 

  13. Y. Yang, H. Bei, S. Chen, E. P. George, J. Tiley, and Y. A. Chang (2010) Acta Mater. 58:541–48.

    Article  Google Scholar 

  14. Y. Yang, Y. A. Chang, L. Tan, and Y. Du: Mater. Sci. Eng. A, 2003, vol. 361, pp. 281–93.

    Article  Google Scholar 

  15. Y. Yang and Y. A. Chang: Intermetallics, 2005, vol. 13, pp. 121–28.

    Article  Google Scholar 

  16. I. Rosales, H. Martinez, D. Bahena, J. A. Ruiz, R. Guardian, and J. Colin: Corros. Sci., 2009, vol. 51, pp. 534–38.

    Article  Google Scholar 

  17. M. K. Meyer, M. J. Kramer, and M. Aknic: Advanced Materials, 1996, vol. 8, pp. 85–88.

    Article  Google Scholar 

  18. M. K. Meyer, M. J. Kramer, and M. Akinca: Intermetallics, 1996, vol. 4, pp. 273–81.

    Article  Google Scholar 

  19. J. H. Schneibel, P. F. Tortorelli, R. O. Ritchie, and J. J. Kruzic: Metall. Mater. Trans. A, 2005, vol. 36A, pp. 525–31.

    Article  Google Scholar 

  20. R. Mitra: Int. Mat. Rev., 2006, vol. 51, pp. 13–64.

    Article  Google Scholar 

  21. S.-H. Haa, K. Yoshimia, K. Maruyamaa, R. Tub, and T. Goto. (2012) Mater. Sci. Eng. A 552:179–88.

    Article  Google Scholar 

  22. M. Azim, S. Burk, B. Gorr, H.-J. Christ, D. Schliephake, M. Heilmaier, R. Bornemann, and P. Haring Bolivar: Oxid. Met. DOI: 10.1007/s11085-013-9375-1.

  23. S. Burk, B. Gorr, V. B. Trindade, and H.-J. Christ: Oxid. Met., 2009, vol. 73, pp. 163–81.

    Article  Google Scholar 

  24. R. Sakidja, J. H. Perepezko, S. Kim, and N. Sekido: Acta Mater., 2008, vol. 56, no. 18, pp. 5223–44.

    Article  Google Scholar 

  25. Y. Liu, M. J. Kramer, A. J. Thom, and M. Akinc: Metall. Mater. Trans. A, 2005, vol. 36A, pp. 601–07.

    Article  Google Scholar 

  26. R. W. Ricker, R. A. Hummel (1951) J Am Ceram Soc 34:271–79.

    Article  Google Scholar 

  27. T. K. Gupta, J. H. Jean (1994) J Mater Res 9:999–1009.

    Article  Google Scholar 

  28. S. Burk, B. Gorr and H.-J. Christ: Acta Mater., 2010, vol. 58, pp. 6154–65.

    Article  Google Scholar 

  29. K. Yoshimia, S. Nakatanic, T. Sudac, S. Hanadaa, and H. Habazakid: Intermetallics, 2002, 10:407–14.

    Article  Google Scholar 

  30. N. P. Bansal and R. H. Doremus (1986) Handbook of Glass Properties. Academic Press, New York.

    Google Scholar 

  31. P. Kopfstad (1972) Nonstoichiometry, Diffusion, and Electrical Conductivity in Binary Metal Oxide. Wiley, New York.

    Google Scholar 

  32. S. Burk, B. Gorr, H.-J. Christ, D. Schliephake, M. Heilmaier, C. Hochmuth, and U. Glatzel: Scripta Mater., 2012, vol. 66, pp. 223–26.

    Article  Google Scholar 

  33. H. Mughrabi (2009) Mater. Sci. Technol. 25:191–204.

    Article  Google Scholar 

  34. R. Sakidja, H. Sieber, and J. H. Perepezko: Philos. Mag. Lett., 1999, vol. 79, pp. 351–57, 1999.

    Article  Google Scholar 

  35. P. Jéhanno, M. Heilmaier, H. Saage, M. Böning, H. Kestler, J. Freudenberger, and S. Drawin (2007) Mater. Sci. Eng. A 463:216–23.

    Article  Google Scholar 

  36. I. Rosales and J. H. Schneibel: Intermetallics, 2000, vol. 8, pp. 885–89.

    Article  Google Scholar 

  37. K. Ito, K. Ihara, K. Tanaka, M. Fujikura, and M. Yamaguchi: Intermetallics, 2001, vol. 9, pp. 591–602.

    Article  Google Scholar 

  38. R. Rosenkranz, G. Frommeyer, and W. Smarsly: Mater. Sci. Eng. A,, 1992, vol. 152, pp. 288–94.

    Article  Google Scholar 

  39. P. Jéhanno, M. Heilmaier, H. Saage, H. Heyse, M. Böning, H. Kestler, and J. H. Schneibel: Scripta Mater., 2006, vol. 55, pp. 525–28.

    Article  Google Scholar 

  40. H. J. Frost and M. F. Ashby (1982) Deformation-Mechanism Maps: The Plasticity and Creep of Metals and Ceramics. Pergamon Press, Oxford.

    Google Scholar 

  41. M. Heilmaier, M. Krüger, H. Saage, J. Rösler, D. Mukherji, U. Glatzel, R. Völkl, R. Hüttner, G. Eggeler, C. Somsen, T. Depka, H.-J. Christ, B. Gorr, and S. Burk: JOM, 2009, vol. 61, pp. 61–67.

    Article  Google Scholar 

  42. P. Jain and K.S. Kumar: Acta Mater., 58, 2010, 2124–42.

    Article  Google Scholar 

  43. D. Sturm, M. Heilmaier, J. H. Schneibel, P. Jéhanno, B. Skrotzki, and H. Saage (2007) Mater. Sci. Eng. A 463:107–14.

    Article  Google Scholar 

  44. A. P. Alur, N. Chollacoop, and K. S. Kumar: Acta Materialia, 2004, vol. 52, pp. 5571–87.

    Article  Google Scholar 

Download references

Acknowledgments

The financial support by the Deutsche Forschungsgemeinschaft (DFG) within the framework of the research unit 727 “Beyond Ni-base Superalloys” is gratefully acknowledged. HB and EPG were supported by the U.S. Department of Energy, Office of Fossil Energy, Advanced Turbine Systems Program. The authors would also like to thank Dr. T. Gietzelt and U. Gerhards from the Institute for Micro Process Engineering at the Karlsruhe Institute of Technology for help with electron microprobe wavelength-dispersive spectroscopy measurements.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Daniel Schliephake.

Additional information

Manuscript submitted January 18, 2013.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Schliephake, D., Azim, M., von Klinski-Wetzel, K. et al. High-Temperature Creep and Oxidation Behavior of Mo-Si-B Alloys with High Ti Contents. Metall Mater Trans A 45, 1102–1111 (2014). https://doi.org/10.1007/s11661-013-1944-z

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-013-1944-z

Keywords

  • Oxidation Resistance
  • Creep Behavior
  • Oxidation Behavior
  • Creep Resistance
  • Solid Solution Strengthen