Skip to main content
Log in

Magnetic Evaluation of Microstructure Changes in 9Cr-1Mo and 2.25Cr-1Mo Steels Using Electromagnetic Sensors

  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

This paper presents results from a multi-frequency electromagnetic sensor used to evaluate the microstructural changes in 9Cr-1Mo and 2.25Cr-1Mo power generation steels after tempering and elevated temperature service exposure. Electromagnetic sensors detect microstructural changes in steels due to changes in the relative permeability and resistivity. It was found that the low frequency inductance value is particularly sensitive to the different relative permeability values of both steels in the different microstructural conditions. The changes in relative permeability have been quantitatively correlated with the microstructural changes due to tempering and long-term thermal exposure, in particular to changes in martensitic/bainitic lath size and number density of carbide precipitates that determine the mean free path to reversible domain wall motion. The role of these microstructural features on pinning of magnetic domain wall motion is discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  1. Raj B, Moorthy V, Jayakumar T, Rao KBS (2003) . Int. Mater. Rev. 48:273–325

    Article  CAS  Google Scholar 

  2. Davis CL, Dickinson SJ, Peyton AJ (2005) Ironmak. Steelmak. 32:381–384

    Article  CAS  Google Scholar 

  3. Masuyama F (2001) ISIJ Int. 41:612–625

    Article  CAS  Google Scholar 

  4. Ennis P, Czyrska-Filemonowicz A (2003) Sadhana Acad. Proc. Eng. Sci. 28:709–730

    Article  CAS  Google Scholar 

  5. Sawada K, Taneike M, Kimura K, Abe F (2003) Mater. Sci. Tech. 19:739–742

    Article  CAS  Google Scholar 

  6. Saroja S, Vijayalakshmi M, Raghunathan VS (1993) Mater. T. JIM 34:901–906

    CAS  Google Scholar 

  7. Senior BA, Noble FW, Eyre BL (1986) Acta Metall. Mater. 34:1321–1327

    Article  CAS  Google Scholar 

  8. Saroja S, Parameswaran P, Vijayalakshmi M, Raghunathan VS (1995) Acta Metall. Mater., 43:2985–3000

    Article  CAS  Google Scholar 

  9. Baker R, Nutting J (1959) J. Iron Steel I. 192:257–268

    CAS  Google Scholar 

  10. Abdel-Latif A, Corbett J, Taplin D (1982) Met. Sci. 16:90–96

    CAS  Google Scholar 

  11. Gope N, Chatterjee A, Mukherjee T, Sarma D (1993) Metall. Trans. A, 24:315–326

    CAS  Google Scholar 

  12. Byeon JW, Kwun SI (2004) J. Korean Phys. Soc. 45:733–737

    CAS  Google Scholar 

  13. Thomas Paul V, Saroja S, Vijayalakshmi M (2008) J. Nucl. Mater. 378:273–281

    Article  CAS  Google Scholar 

  14. Jiles D.: Introduction to Magnetism and Magnetic Materials, 2 nd edn., Chapman and Hall/CRC, London; New York, NY (1998)

    Google Scholar 

  15. Buttle DJ, Briggs GAD, Jakubovics JP, Little EA, Scruby CB, Busse G, Sayers CM, Green RE (1986) Phil. Trans. R. Soc. Lond. A, 320:363–378

    Article  CAS  Google Scholar 

  16. Nakai N, Furuya Y, Obata M (1989) Mater. T. JIM 30:197–199

    CAS  Google Scholar 

  17. Moorthy V, Vaidyanathan S, Raj B, Jayakumar T, Kashyap B (2000) Metall. Mater. Trans. A 31:1053–1065

    Article  CAS  Google Scholar 

  18. Moorthy V, Vaidyanathan S, Jayakumar T, Raj B (1998) Philos. Mag. A, 77:1499 – 1514

    Article  CAS  Google Scholar 

  19. Byeon JW, Kwun SI (2003) Mater. Lett., 58:94–98

    Article  Google Scholar 

  20. Jiles DC (1988) J. Phys. D Appl. Phys., 21:1186

    Article  CAS  Google Scholar 

  21. Kim CS, Kwun SI (2007) Mater. Trans., 48:3028–3030

    Article  CAS  Google Scholar 

  22. Yamaura S, Furuya Y, Watanabe T (2001) Acta Mater. 49:3019–3027

    Article  CAS  Google Scholar 

  23. Sakamoto H, Okada M, Homma M (1987) IEEE T. Magn. 23:2236–2238

    Article  Google Scholar 

  24. Chen ZJ, Jiles DC (1993) IEEE T. Magn. 29:2554–2556

    Article  CAS  Google Scholar 

  25. Yin W, Hao XJ, Peyton AJ, Strangwood M, Davis CL (2009) NDT & E Int. 42:64–68

    Article  CAS  Google Scholar 

  26. Dickinson SJ, Binns R, Yin W, Davis C, Peyton AJ (2007) IEEE T. Instrum. Meas. 56:879–886

    Article  Google Scholar 

  27. Peyton AJ, Yin W, Dickinson SJ, Davis CL, Strangwood M, Hao X, Douglas AJ, Morris PF (2010) Ironmak. Steelmak. 37:135–139

    Article  CAS  Google Scholar 

  28. Hao X, Yin W, Strangwood M, Peyton A, Morris P, Davis C (2009) Metall. Mater. Trans. A, 40:745–756

    Article  CAS  Google Scholar 

  29. Hao XJ, Yin W, Strangwood M, Peyton AJ, Morris PF, Davis CL (2008) Script. Mater. 58:1033–1036

    Article  CAS  Google Scholar 

  30. Haldane RJ, Yin W, Strangwood M, Peyton AJ, Davis CL (2006) Script. Mater., 54:1761–1765

    Article  CAS  Google Scholar 

  31. Liu J, Hao XJ, Zhou L, Strangwood M, Davis CL, Peyton AJ (2012) Script. Mater 66:367–370

    Article  CAS  Google Scholar 

  32. Furtado HC, de Almeida LH, Le May I (2007) Mater. Charact., 58:72–77

    Article  CAS  Google Scholar 

  33. ASTM: Standard Specification for Seamless Ferritic Alloy-Steel Pipe for High-Temperature Service, ASTM International, West Conshohocken, PA, 2009, a335/A335M−09a.

  34. ASTM: Standard Specification for Seamless Ferritic and Austenitic Alloy-Steel Boiler, Superheater, and Heat-Exchanger Tubes, ASTM International, West Conshohocken, PA, 2009, a213/A213M–09b.

    Google Scholar 

  35. Yang JR, Huang CY, Yang CN, Horng JL (1993) Mater. Charact. 30:75–88

    Article  CAS  Google Scholar 

  36. Arivazhagan B, Prabhu R, Albert S, Kamaraj M, Sundaresan S (2009) J. Mater. Eng. Perform. 18:999–1004

    Article  CAS  Google Scholar 

  37. Sangdahl G., Semchyshen M.: Application of 2.25Cr-1Mo Steel for Thick-Wall Pressure Vessels, ASTM International, Philadelphia, PA, 1982

    Book  Google Scholar 

  38. Bramfitt BL, Benscoter OA.: Metallographer’s guide: practice and procedures for irons and steels, p. 238, ASM International; Materials Park, OH, 2001

    Google Scholar 

  39. Ghassemi-Armaki H, Chen RP, Maruyama K, Yoshizawa M, Igarashi M (2009) Mater. Lett. 63:2423–2425

    Article  CAS  Google Scholar 

  40. Zielinska-Lipiec A, Czyrska-Filemonowicz A, Ennis PJ, Wachter O (1997) J. Mater. Process. Tech. 64:397–405

    Article  Google Scholar 

  41. Pesicka J, Kuzel R, Dronhofer A, Eggeler G (2003) Acta Mater. 51:4847–4862

    Article  CAS  Google Scholar 

  42. Šternberk J, Kratochvílová E, Gemperle A, Faja V, Walder V (1985) Czech J. Phys. 35:1259–1266

    Article  Google Scholar 

  43. Yoshino M, Mishima Y, Toda Y, Kushima H, Sawada K, Kimura K (2008) Mater. High Temp. 25:149–158

    Article  CAS  Google Scholar 

  44. J. Šternberk, E. Kratochvílová, J. Hřebík, and A. Gemperle: Phys. Status Solidi A, 1983, vol. 79, pp. 523–529

    Article  Google Scholar 

  45. Race JM, Bhadeshia HKDH (1992) Mater. Sci. Tech. 8:875–882

    Article  CAS  Google Scholar 

  46. Hucinska J (2000) Mater. Corros, 51:173–176

    Article  CAS  Google Scholar 

  47. Pilling J, Ridley N (1982) Metall. Trans. A, 13:557–563

    Google Scholar 

  48. Watts BR (1988) J. Phys. F Met. Phys. 18:1183–1195

    Article  CAS  Google Scholar 

  49. Brown RA (1977) J. Phys. F Met. Phys. 7:1283–1295

    Article  CAS  Google Scholar 

  50. Bohnenkamp U, Sandstrom R, Grimvall G (2002) J. Appl. Phys., 92:4402–4407

    Article  CAS  Google Scholar 

  51. Jiles D.: Introduction to Magnetism and Magnetic Materials, 2 nd edn., pp. 171-175, Chapman and Hall/CRC, London; New York, 1998.

    Google Scholar 

  52. Jiles DC (2002) J. Magn. Magn. Mater. 242-245, pp. 116–124.

    Article  Google Scholar 

  53. Baldwin Jr JA, Smith Jr PW, Milstein F (1975) Solid State Commun. 17:973–974

    Article  CAS  Google Scholar 

  54. Voort G.V.: Introduction to Quantitative Metallography, 1997, Buehler Ltd., Lake Bluff, IL

    Google Scholar 

  55. Zhou ZN, Wu KM (2009) Script. Mater., 61:670–673

    Article  CAS  Google Scholar 

  56. Ceretti M, Coppola R, Fiori F, Magnani M.: Phys. B, 1997, vol. 234-236, pp. 999–1002.

    Article  Google Scholar 

  57. Neel L (1944) Cah. Phys., 25:21–44

    Google Scholar 

  58. Ishikawa T, Hamada Y, Ohmori K (1989) IEEE Trans. Magn., 25:3434–3436

    Article  CAS  Google Scholar 

  59. Turner S, Moses A, Hall J, Jenkins K (2010) J. Appl. Phys., 107:09A307

    Article  Google Scholar 

  60. J. Shilling and J. Houze, G.: IEEE T. Magn., 1974, vol. 10, pp. 195–223.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was carried out with financial support from EPSRC under the Grant EP/H023429/1.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jun Liu.

Additional information

Manuscript submitted February 4, 2013.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Liu, J., Strangwood, M., Davis, C.L. et al. Magnetic Evaluation of Microstructure Changes in 9Cr-1Mo and 2.25Cr-1Mo Steels Using Electromagnetic Sensors. Metall Mater Trans A 44, 5897–5909 (2013). https://doi.org/10.1007/s11661-013-1938-x

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-013-1938-x

Keywords

Navigation