Skip to main content
Log in

Microstructure and Wear Behavior of Solidification Sonoprocessed B390 Hypereutectic Al-Si Alloy

  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

The hypereutectic Al-Si alloys constitute an important family of alloys because of their excellent wear resistance and low thermal expansion. However, the optimal microstructure and hence the optimal service performance of these alloys cannot be achieved by the conventional melt treatments used in industry today, because of the chemical incompatibility between the primary-Si refiners and the eutectic-Si modifiers used in microstructure control. The current study aimed at using ultrasonic vibrations to improve the microstructure and the properties of these alloys. The results of the current study showed that for the B390 Al-Si alloy (i) the ultrasonic treatment has potential refining effect on the primary Si and Fe intermetallic phases, (ii) the primary Si particles become finer as the pouring temperature decreases from 1033 K (760 °C) to 938 K (665 °C), (iii) pouring and ultrasonic treatment at temperatures below the start of primary Si precipitation result in the coexistence of large and fine Si particles in microstructure, (iv) phosphorous additions of 50 ppm did not show any substantial effect in the ultrasonically treated ingots, (v) ultrasonic-treated samples have uniform hardness over the surface while the untreated samples show large scattering (high standard deviation) in hardness levels and (vi) ultrasonic-treated samples showed better wear resistance in the absence of phosphorous.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. G.K.Sigworth: AFS Trans., 1983, vol. 91, pp. 7-15.

    CAS  Google Scholar 

  2. J. E. Hatch (ed.): Aluminum: Properties and Physical Metallurgy, American Society for Metals, Metals Park, OH, 1984.

    Google Scholar 

  3. J. Gruzleski and B. Closset: The Treatment of Liquid Aluminum-silicon Alloys, The American Foundrymen Society, Des Plaines, 1990.

  4. I.G. Brodova, P.S. Popel and G.I. Eskin: Liquid Metal Processing: Applications to Aluminum Alloy Production, Taylor & Francis, London, 2002.

  5. W. Khalifa, Y. Tsunekawa, M. Okumiya: AFS Trans., 2010, vol. 118, pp. 91–8.

    CAS  Google Scholar 

  6. W. Khalifa, Y. Tsunekawa, M. Okumiya: Int. J. Cast. Met. Res., 2008, vol. 21, pp. 129–134.

    Article  CAS  Google Scholar 

  7. Li Xin-tao, Li Ting-ju, Li Xi-meng, Jin Jun-ze: Ultrason. Sonochem., 2006, vol. 13, pp. 121–25.

    Article  Google Scholar 

  8. Y. Tsunekawa, K. Taga, Y. Fukui, and M. Okumiya: Mater. Sci. Forum, 2010, vols. 638–642, pp. 362–67.

    Article  Google Scholar 

  9. J.I. Youn, B.I. Kang, D.G. Ko, and Y.J. Kim: Int. J. Cast Met. Res., 2008, vol. 21, pp. 135–38.

    Article  CAS  Google Scholar 

  10. V.O. Abramov, O.V. Abramov, B.B. Straumal, and W. Gust: Mater. Des., 1997, vol. 18, pp. 323–26.

    Article  CAS  Google Scholar 

  11. K. Oda, S. Komarov, Y. Ishiwata, T. Tsuchida, and I. Okamoto: 7th High Quality Die Casting Meeting, Japan, 2007.

  12. H. Puga, S. Costa, J. Barbosa, S. Ribeiro, M. Prokic: J. Mater. Process. Technol. 2011, vol. 211 1729–35.

    Article  CAS  Google Scholar 

  13. L. Backreud, G. Chai, and J. Tamminen: Solidification Characteristics of Aluminum Alloys, AFS/Akanaluminium, Stokholm, 1990.

    Google Scholar 

  14. G.I. Eskin: Ultrasonic Treatment of Light Alloy Melts, Gordon &Breach, Amsterdam, 1998.

    Google Scholar 

  15. X. Jian, H. Xua, T.T. Meeka, and Q. Hanb: Mater. Lett., 2005, vol. 59, pp. 190–93.

    Article  CAS  Google Scholar 

  16. V. Abramov, O. Abramov, V. Bulgakov, and F. Sommer: Mater. Lett., 1998, vol. 37, pp. 27–34.

    Article  CAS  Google Scholar 

  17. M. Faraji, D.G. Eskin, and L. Katgerman: Int. Foundry Res., 2010, vol. 62, pp. 20–23.

    CAS  Google Scholar 

  18. X. Jian, T.T. Meek, and Q. Han: Scripta Mater. 2006, vol. 54, pp. 893–96.

    Article  CAS  Google Scholar 

  19. H. Kattoh, A. Hashimoto, S. Kitaoka, M. Kattoh, and M. Shioda: J. Jpn. Foundry Soc., 2002, vol. 52, pp. 18–23.

    CAS  Google Scholar 

  20. G.I. Eskin: Ultrason. Sonochem., 2001, vol. 8, pp. 319–25.

    Article  CAS  Google Scholar 

  21. T.V. Atamanenko, D.G. Eskin, L. Zhang, and L. Katgerman: Metall. Mater. Trans. A, 2010, vol. 41A, pp. 2056–66.

    Article  CAS  Google Scholar 

  22. A.T. Alpas, and J. Zhang: Metall. Mater. Trans. A, 1994, vol. 25A, pp. 969–81.

    Article  CAS  Google Scholar 

  23. C.Y.Yang, S.L.Lee, C.K. Lee, and J.C. Lin: Wear, 2006, vol. 261, 1348–58.

    Article  CAS  Google Scholar 

  24. H. Sato,T. Murase, T. Fujii, S. Onaka, Y. Watanabe, and M. Kato: Acta Mater., 2008, vol. 56, pp. 4549–58.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors would like to thank the group of “Materials Processing Laboratory,” Toyota Technological Institute- Japan, where the UST experiments were performed, and the “Foundry Technology Division,” Central Metallurgical R&D Institute-Egypt, where some microstructural studies and wear tests were performed.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shimaa El-Hadad.

Additional information

Manuscript submitted September 10, 2012.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Khalifa, W., El-Hadad, S. & Tsunekawa, Y. Microstructure and Wear Behavior of Solidification Sonoprocessed B390 Hypereutectic Al-Si Alloy. Metall Mater Trans A 44, 5817–5824 (2013). https://doi.org/10.1007/s11661-013-1936-z

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-013-1936-z

Keywords

Navigation