Skip to main content
Log in

On the Role of Ni in Cu Precipitation in Multicomponent Steels

  • Communication
  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

The nature of Cu precipitation in quench-tempered multicomponent high-strength low-alloy steels is characterized by atom probe tomography. The detected nanometer sized Ni-rich clusters act as preferential nucleation sites for Cu-rich clusters, and Ni segregation at the Cu-rich precipitate/matrix heterophase interface contribute to fast growth of Cu precipitates. Molecular dynamics simulation indicates that local Ni clustering at atomic scale significantly quickens the solute diffusion. The initial Ni composition has a profound effect on the nature of Cu precipitation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. D. Isheim, M. S. Gagliano, M. E. Fine, and D. N. Seidman: Acta Mater., 2006, vol. 54, pp.841-9.

    Article  CAS  Google Scholar 

  2. R. P. Kolli, and D. N. Seidman: Acta Mater., 2008, vol. 56, pp. 2073-88.

    Article  CAS  Google Scholar 

  3. M.D. Mulholland, and D.N. Seidman: Acta Mater., 2011, vol. 59, pp. 1881-97.

    Article  CAS  Google Scholar 

  4. Q.D. Liu, W.Q. Liu, and X.Y. Xiong: J. Mater. Res., 2012, vol. 27, pp. 1060-7.

    Article  CAS  Google Scholar 

  5. Q.D. Liu, and S.J. Zhao: Metall. Mater. Trans. A, 2013, vol. 44, pp. 163-71.

    Article  Google Scholar 

  6. Q.D. Liu, and S.J. Zhao: MRS Communi., 2012, vol. 2, pp.127-32.

    Article  CAS  Google Scholar 

  7. G.R. Odette, B.D.Wirth, D.J. Bacon, and N.M. Ghoniem: MRS Bull., 26, 2001, pp. 176-81.

    Article  CAS  Google Scholar 

  8. T. Toyama, Y. Nagai, Z. Tang, M. Hasegawa, A. Almazouzi, E. van Walle, and R. Gerard: Acta Mater., 2007, vol. 55, pp. 6852-60.

    Article  CAS  Google Scholar 

  9. M.K. Miller, and K.F. Russell: J. Nucl. Mater., 2007, vol. 371, pp. 145-60.

    Article  CAS  Google Scholar 

  10. Reports: Integrity of Reactor Pressure Vessels in Nuclear Power Plants: Assessment of Irradiation Embrittlement Effects in Reactor Pressure Vessel Steels. IAEA Nuclear Energy Series. No. NP-T-3.11. International Atomic Agency, Vienna, 2009.

    Google Scholar 

  11. G.E. Lucas: J. Nucl. Mater., 2010, vol. 407, pp. 59-69.

    Article  CAS  Google Scholar 

  12. M.K. Miller, B.D. Wirth, and G.R. Odette: Mater. Sci. Eng. A, 2003, vol. 353, pp. 133-9.

    Article  Google Scholar 

  13. T. H. Lee, Y. O. Kim, and S. J. Kim: Philos. Mag., 2007, vol. 87, pp. 209-24.

    Article  CAS  Google Scholar 

  14. M. Schober, E. Eidenberger, H. Leitner, P. Staron, D. Reith, and R. Podloucky: Appl. Phys. A, 2010, vol. 99, pp. 697-704.

    Article  CAS  Google Scholar 

  15. N. Castin, M. I. Pascuet, and L. Malerba: J. Chem. Phys., 2011, vol.135, p. 064502.

    Article  CAS  Google Scholar 

  16. Q.D. Liu: Ph.D. Dissertation, Shanghai University, China, 2012.

  17. T. Takeuchi, A. Kuramoto, J. Kameda, T. Toyama, Y. Nagai, M. Hasegawa, T. Ohkubo, T. Yoshiie, Y. Nishiyama, and K. Onizawa: J. Nucl. Mater., 2010, vol. 402, pp. 93-101.

    Article  CAS  Google Scholar 

  18. A. Seko, S. R. Nishitani, I. Tanaka, H. Adachi, and E. F. Fujita: CALPHAD, 2004, vol. 28, pp. 173-6.

    Article  CAS  Google Scholar 

  19. C. Zhang, and M. Enomoto: Acta Mater., 2006, vol. 54, pp. 4183-91.

    Article  CAS  Google Scholar 

  20. R.P. Kolli, Z. Mao, D.N. Seidman, and D.T. Keane: Appl. Phys. Lett., 2007, vol. 91 p. 241903.

    Article  Google Scholar 

  21. P.D. Styman, J.M. Hyde, K. Wilford, A. Morley, and G.D.W. Smith: Prog. Nucl. Energ., 2012, vol. 57, pp. 86-92.

    Article  CAS  Google Scholar 

  22. P. Pareige, J.C. Van Duysen, and P. Auger: Appl. Surf. Sci., 1993, vol. 67, pp. 342-7.

    Article  CAS  Google Scholar 

  23. Z. Jiao, and G.S. Was: J. Nucl. Mater., 2012, vol. 425, pp. 105-11.

    Article  CAS  Google Scholar 

  24. R. Ngayam-Happy, C.S. Becquart, C. Domain, and L. Malerba: J. Nucl. Mater., 2012, vol.426, pp. 198-207.

    Article  CAS  Google Scholar 

  25. A. Cerezo, S. Hirosawa, I. Rozdilsky, and G. D. W. Smith: Phil. Trans. R. Soc. Lond. A, 2003, vol. 361, pp. 463-76.

    Article  CAS  Google Scholar 

  26. M. K. Miller, Atom probe tomography: analysis at the atomic level, Plenum Pub Corp, New York, NY, 2000.

    Book  Google Scholar 

  27. R.P. Kolli, and D.N. Seidman: Microsc. Microanal., 2007, vol. 13, pp. 272-84.

    Article  CAS  Google Scholar 

  28. J.M. Hyde, E.A.Marquis, K.B.Wilford, and T.J.Williams: Ultramicroscopy, 2011, vol. 111, pp. 440-7.

    Article  CAS  Google Scholar 

  29. A. Einstein: Annalen der Physik, 1905, vol. 17, pp. 549-60.

    Article  CAS  Google Scholar 

  30. J. Marian, B.D. Wirth, G.R. Odette, and J.M. Perlado: Comp. Mater. Sci., 2004, vol. 31, pp. 347-67.

    Article  CAS  Google Scholar 

  31. C.A. Becker: in Tools, Models, Databases and Simulation Tools Developed and Needed to Realize the Vision of ICME, ASM, 2011. http://www.ctcms.nist.gov/potentials.

  32. Z.W Zhang, C.T. Liu, M.K. Miller, X. Wang, Y.R Wen, T. Fujita, A. Hirata, M.W. Chen, G. Chen, and B.A. Chin: Nature 2013, vol.3, 1327.

    Google Scholar 

  33. O. Kozo, O. Hiroshi, A. Kazuo, F. Michihiro, K. Koji, K. Fumio, and U. Ryuji. ISIJ Inter., 1994, vol. 34, pp. 346-54.

    Article  Google Scholar 

  34. G. Bonny, R.C. Pasianot, N. Castin, and L. Malerba: Philos. Mag., 2009. vol. 89, pp. 3531-46.

    Article  CAS  Google Scholar 

  35. M.D. Lin, J.J. Zhu, W. Wang, B.X. Zhou, W.Q. Liu, and G. Xu: Acta Phys. Sinica, 2010, vol.59, pp. 1163-8.

    CAS  Google Scholar 

  36. Y.R. Wen, A. Hirata, Z.W. Zhang, T. Fujita, C.T. Liu, J.H. Jiang, and M.W. Chen: Acta Mater., 2013, vol.61, pp. 2133-47.

    Article  CAS  Google Scholar 

  37. H. Nakamichi, K. Yamada, and K. Sato: J Micros., 2011, vol. 242, pp. 55-61.

    Article  CAS  Google Scholar 

Download references

This work was financially supported by the National Basic Research Program of China under Grant No. 2011CB012904 and the National Natural Science Foundation of China under Grant No. 50931003. Many thanks for the help of Wenxiong Song at Shanghai University in molecular dynamics simulation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jianfeng Gu.

Additional information

Manuscript submitted May 7, 2013.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Liu, Q., Gu, J. & Liu, W. On the Role of Ni in Cu Precipitation in Multicomponent Steels. Metall Mater Trans A 44, 4434–4439 (2013). https://doi.org/10.1007/s11661-013-1933-2

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-013-1933-2

Keywords

Navigation