Skip to main content
Log in

Development of Multiphase Microstructure with Bainite, Martensite, and Retained Austenite in a Co-Containing Steel Through Quenching and Partitioning (Q&P) Treatment

  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

The quenching and partitioning (Q&P) treatment of steel aims to produce a higher fraction of retained austenite by carbon partitioning from supersaturated martensite. Q&P studies done so far, relies on the basic concept of suppression of carbide formation by the addition of Si and/or Al. In the present study Q&P treatment is performed on a steel containing 0.32 C, 1.78 Mn, 0.64 Si, 1.75 Al, and 1.20 Co (all wt pct). A combination of 0.64 Si and 1.75 Al is chosen to suppress the carbide precipitation and therefore, to achieve carbon partitioning after quenching. Addition of Co along with Al is expected to accelerate the bainite transformation during Q&P treatment by increasing the driving force for transformation. The final aim is to develop a multiphase microstructure containing bainite, martensite, and the retained austenite and to study the effect of processing parameters (especially, quenching temperature and homogenization time) on the fraction and stability of retained austenite. A higher fraction of retained austenite (~13 pct) has indeed been achieved by Q&P treatment, compared to that obtained after direct-quenching (2.7 pct) or isothermal bainitic transformation (9.7 pct). Carbon partitioning during martensitic and bainitic transformations increased the stability of retained austenite.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

References

  1. J. Speer, D.K. Matlock, A.M. Streicher, F. Rizzo F, and G. Krauss: The Iron & Steel Soc. (ISS) and The Minerals, Met. & Mat. Soc. (TMS), 2003, pp. 505–22.

  2. C.Y. Wang, J. Shi, W.Q. Cao and H. Dong: Mater. Sci. Eng. A, 2010, vol. 527, pp. 3442–49.

    Article  Google Scholar 

  3. M.J. Santofimia, T. Nguyen-Minh, L. Zhao, D.N. Hanlon, A.K. Theo and J. Sietsma: Proceedings of of the International Conference on New Developments in Advanced High-Strength Sheet Steels, Orlando, Florida, USA, 2008, pp. 191–98.

  4. H.Y. Li, X.W. Lu, X.C. Wu, Y.A. Min, and X.J. Jin: Mater. Sci. Eng. A, 2010, vol. 527, pp. 6255–59.

    Article  Google Scholar 

  5. S.J. Kim, J. Speer, H. Kim, and B.C. De Cooman: Proceedings of the International Conference on New Developments in Advanced High-Strength Sheet Steels, Orlando, Florida, USA, 2008, pp. 199–207.

  6. F. Fazeli and M. Militzer: ISIJ Int., 2012, vol. 52, pp. 650–58.

    Article  CAS  Google Scholar 

  7. H.K.D.H. Bhadeshia and D.V. Edmonds: Metall. Trans. A, 1979, vol. 10A, pp. 895–907.

    CAS  Google Scholar 

  8. G. Krauss: Heat Treatment and Processing Principles, ASM International, Metals Park, OH, 1990, pp. 202–56.

    Google Scholar 

  9. R.W.K. Honeycombe and H.K.D.H. Bhadeshia: Steels: Microstructures and Properties, Butterworth-Heinemann Publication, London, 2006, pp. 183-207.

    Google Scholar 

  10. G. Krauss: Proceedings of an International Conference on Phase Transformations in Ferrous Alloys, Metallurgical Society of AIME, Warrendale, PA, 1984, pp. 101–23.

  11. M.F. Gallagher, J.G. Speer, D.K. Matlock, and N.M. Fonstien: Proceedings of the 44th Mechanical Working and Steel Processing Conference, Iron and Steel Society, Warrendale, PA, 2002, pp. 153–72.

  12. E. De Moor, S. Lacroix, L. Samek, J. Penning and J.G. Speer: Proceedings of the 3rd International Conference on Advanced Structural Steels, Gyeongju, Korea, 2006, pp. 22–24.

  13. J.G. Speer, D.K. Matlock, B.C. De Cooman, and J.G. Schroth: Acta Mater., 2003, vol. 51, pp. 2611–22.

    Article  CAS  Google Scholar 

  14. J.G. Speer, D.K. Matlock, F.C. Rizzo, and D.V. Edmonds: Curr. Opin. Solid State Mater. Sci., 2004, vol. 8, pp. 219–37.

  15. A.J. Clarke, J.G. Speer, D.K. Matlock, F.C. Rizzo, D.V. Edmonds, and M.J. Santofimia: Scripta Mater., 2009, vol. 61, pp. 149–52.

    Article  CAS  Google Scholar 

  16. Y. Takahama, M.J. Santofimia, M.G. Mecozzi, L. Zhao, and J. Sietsma: Acta Mater., 2012, vol. 60, pp. 2916–26.

    Article  CAS  Google Scholar 

  17. W.C. Hagel, G.M. Pound, and R.F. Mehl: Acta Metall., 1956, vol. 4, pp. 37–56.

    Article  CAS  Google Scholar 

  18. K.M. Wu and H.K.D.H. Bhadeshia: Scripta Mater., 2012, vol. 67, pp. 53–56.

    Article  CAS  Google Scholar 

  19. K.R. Kinsman and H.I. Aaronson: Metall. Trans., 1973, vol. 4, pp. 959–67.

    Article  CAS  Google Scholar 

  20. C. Garcia-mateo, F.G. Caballero, and H.K.D.H. Bhadeshia: ISIJ Int., 2003, vol. 43, pp. 1821–25.

    Article  CAS  Google Scholar 

  21. R.A. Clark and G. Thomas: Metall. Trans. A, 1975, vol. 6A, pp. 969–79.

    CAS  Google Scholar 

  22. Y. Kanetsuki, N. Ibaraki, and S. Ashida: ISIJ Int., 1991, vol. 31, pp. 304–11.

    Article  Google Scholar 

  23. S.M.C. Van Bohemen: Mater. Sci. Technol., 2012, vol. 28, pp. 487–95.

    Article  Google Scholar 

  24. K.W. Andrews: J. Iron Steel Inst., 1965, vol. 203, pp. 721–27.

    CAS  Google Scholar 

  25. D.P. Koistinen and R.E. Marburger: Acta Metall., 1959, vol. 7, pp. 59–60.

    Article  Google Scholar 

  26. D.V. Edmonds, K. He, F.C. Rizzo, B.C. De Cooman, D.K. Matlock, and J.G. Speer: Mater. Sci. Eng. A, 2006, vols. 438–440, pp. 25–34.

    Article  Google Scholar 

  27. F.S. Lepara: Metallography, 1979, vol. 12, pp. 263–68.

    Article  Google Scholar 

  28. R.A. Young: The Rietveld Method, Oxford University Press, London, 2002, pp. 1–111.

    Google Scholar 

  29. M. Zhang and P.M. Kelly: Prog. Mater. Sci., 2009, vol. 54, pp. 1101–70.

    Article  CAS  Google Scholar 

  30. S.J. Lee and C.J. Van Tyne: ISIJ Int., 2011, vol. 51, pp. 169–71.

    Article  CAS  Google Scholar 

  31. N.H. Van Dijk, A.M. Butt, L. Zhao, J. Sietsma, S.E. Offerman, J.P. Wright, and S. Van der Zwaag: Acta Mater., 2005, vol. 53, pp. 5439–47.

    Article  Google Scholar 

  32. M.J. Santofimia, L. Zhao, R. Petrov and J. Sietsma: Mater. Charact., 2008, vol. 59, pp. 1758–64.

    Article  CAS  Google Scholar 

  33. D. Kim, J.G. Speer, and B.C. De Cooman: Metall. Mater. Trans. A, 2011, vol. 42A, pp. 1575–85.

    Article  Google Scholar 

  34. D. Kim, S. Lee, and B.C. De Cooman: Metall. Mater. Trans. A, 2012, vol. 43A, pp. 4967–83.

    Article  Google Scholar 

  35. S.M.C. Van Bohemen, M.J. Santofimia and J. Sietsma: Scripta Mater., 2008, vol. 58, pp. 488–91.

    Article  Google Scholar 

  36. P. Kolmskog, A. Borgenstam, M. Hillert, P. Hedstome, S.S. Babu, H. Terasaki, and Y. Komizo: Metall. Mater. Trans. A, 2012, vol. 43A, pp. 4984–88.

    Article  Google Scholar 

  37. H.K.D.H. Bhadeshia and A.R. Waugh: Acta Metall., 1982, vol. 30, pp. 775–84.

    Article  CAS  Google Scholar 

  38. H.K.D.H. Bhadeshia: Bainite in Steels: Transformation, Microstructure and Properties, 2nd ed., IOM Communications Ltd, London, 2001, pp. 8–208.

    Google Scholar 

  39. J. Wang and S.V.D. Zwaag: Metall. Mater. Trans. A, 2001, vol. 32A, pp. 1527–38.

    Article  CAS  Google Scholar 

  40. S. Lee, S.J. Lee, and B.C. De Cooman: Scripta Mater., 2008, vol. 65, pp. 225–28.

    Google Scholar 

  41. J.G. Speer, D.K. Matlock, D.V. Edmonds, F. Rizzo, and E.B. Damm: New Developments in Long and Forged Products: Metallurgy and Applications, A.J. Shutts, ed., 2006, pp. 191–202.

  42. M. Bohuslav, J. Hana, H. Daniela, K. Ludmila, and K. Danuse: Mater. Sci. Forum, 2010, vols. 654–656, pp. 94–7.

    Google Scholar 

  43. I. Cemy, D. Mikuslav, J. Sis, B. Masek, H. Jirkova, and J. Malina: Proc. Eng., 2011, vol. 10, pp. 3310–15.

    Article  Google Scholar 

  44. I. Yang, L. Yu-peng, W. Chong, L. Shi-tong, and C. Lu-bin: J. Iron Steel Res. Int., 2011, vol. 18, pp. 70–74.

    Article  Google Scholar 

Download references

Acknowledgments

The authors duly acknowledge the financial support from Tata Steel R&D, Jamshedpur and the experimental facilities offered by I.I.T. Kharagpur and I.I.T. Bombay.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Santigopal Samanta.

Additional information

Manuscript submitted April 11, 2013.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Samanta, S., Das, S., Chakrabarti, D. et al. Development of Multiphase Microstructure with Bainite, Martensite, and Retained Austenite in a Co-Containing Steel Through Quenching and Partitioning (Q&P) Treatment. Metall Mater Trans A 44, 5653–5664 (2013). https://doi.org/10.1007/s11661-013-1929-y

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-013-1929-y

Keywords

Navigation