Skip to main content
Log in

HRTEM Study of Irradiation-Induced Cavities in Oxide-Dispersed Ferritic Steel

  • Symposium: Solid-State Interfaces II: Toward an Atomistic-Scale Understanding of Structure, Properties, and Behavior through Theory and Experiment
  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

Structures of oxide nanoparticles and the effects of matrix/nanoparticle interfaces on irradiation-induced cavity nucleation and distribution in Fe-16Cr-4.5Al-0.3Ti-2W-0.37Y2O3 oxide-dispersed ferritic steel have been studied using high-resolution transmission electron microscopy techniques. The frequent observations of partially crystallized complex-oxide nanoparticles in as-fabricated steel provide an implication into the formation mechanism of nanoparticles. The mechanism involves the solid-state mixing of pre-alloyed metallic powder and Y2O3 powder to form an amorphous solid solution and from which the nucleation of high density complex-oxide nanoparticles (on the order of ~1 × 1022 m−3). Simultaneous dual ion beams consisting of iron and helium were employed to irradiate the oxide-dispersed steel at 698 K (425 °C). The result shows that the defective oxide nanoparticles have a positive effect on the mitigation of dimensional swelling as a result of the preferred nucleation of helium-filled cavities at the matrix/nanoparticle interfaces.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. K. Ehrlich: Phil. Trans. R. Soc. Lond., 1999, vol. A 357, pp. 595-617.

    Article  CAS  Google Scholar 

  2. S. Ukai, M. Fujiwara: J. Nucl. Mater., 2002, vol. 307-311, pp. 749-757.

    Article  Google Scholar 

  3. A. Kohyama, M. Seki, K. Abe, T. Muroga, H. Matsui, S. Jitukawa, S. Matsuda: J. Nucl. Mater., 2000, vol. 283-287, pp. 20-27.

    Article  Google Scholar 

  4. E.E. Bloom, J. Nucl. Mater., 1979, vol. 85-86, pp. 795-804.

    Article  Google Scholar 

  5. S. Ukai, T. Nishida, H. Okuda, T. Okuda, M. Fujiwara, K. Asabe: J. Nucl. Sci. Technol., 1997, vol. 34 no. 3, pp. 256-263.

    Article  CAS  Google Scholar 

  6. S. Ukai, T. Nishida, T. Okuda, T. Yoshitake: J. Nucl. Sci. Technol., 1998, vol. 35, no. 4, pp. 294-300.

    Article  CAS  Google Scholar 

  7. L. Hsiung, M. Fluss, A.Kimura: Mater. Lett., 2010, vol. 64, pp. 1782-1785.

    Article  CAS  Google Scholar 

  8. K. Yutani, H. Kishimoto, R. Kasada, A. Kimura: J. Nucl. Mater., 2007, vol. 367-370, pp. 423-427.

    Article  Google Scholar 

  9. C. Boudias and D. Monceau: The Crystallographic Software for Research and Teaching, Senlis, France, 1989–1998.

  10. P. Stadelmann: Simulation of Diffraction Patterns and High Resolution Images Using Jems, CIME-EPFL, Lausanne, Switzerland, 1999–2011.

  11. A. Nørlund Christensen and R.G. Hazell: Acta Chemica Scandinavica, 1991, vol. 45, pp. 226230.

    Article  Google Scholar 

  12. L.S. Darken, R.W. Gurry: Physical Chemistry of Metals, McGraw-Hill, New York 1953.

    Google Scholar 

  13. L. Wen, X. Sun, Z. Xiu, S. Chen, C-T Tsai: J. Europ. Ceram. Soc. 24 (2004) 2681-2688.

    Article  CAS  Google Scholar 

  14. L.K. Mansur, W.A. Coghlan: J. Nucl. Mater. 119 (1983) 1-25.

    Article  CAS  Google Scholar 

  15. R.E. Stoller, G.R. Odette: J. Nucl. Mater. 131 (1985) 118-125.

    Article  CAS  Google Scholar 

  16. L.K. Mansur, E.H. Lee, P.J. Maziasz, A.P. Rowcliffe: J. of Nucl. Mater. 141-143 (1986) 633-646.

    Article  Google Scholar 

  17. L.L. Horton, L.K. Mansur: ASTM STP, 1985, vol. 870, pp. 344-362.

    CAS  Google Scholar 

  18. I.-S Kim, J.D. Hunn, N. Hashimoto, D.L. Larson, P.J. Maziasz, K. Miyahara, E.H. Lee: J. Nucl. Mater. 2000, vol. 280, pp. 264–274.

    Article  CAS  Google Scholar 

  19. T. Yamamoto, G.R. Odette, P. Miao, D.J. Edwards, R.J. Kurtz: J. of Nucl. Mater., 2009, vol. 386-388, pp. 338-341.

    Article  Google Scholar 

  20. M. Ruhle, M, Wilkens: Cryst. Lattice Defects, 1975, vol. 6, pp. 129-140.

    Google Scholar 

Download references

Acknowledgments

This work was performed under the auspices of the U.S. Department of Energy by the Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344. Work at the LLNL was funded by the Laboratory Directed Research and Development Program at the LLNL under Project tracking code 12-SI-002. The author gratefully acknowledges Professor Akihiko Kimura of Kyoto University for fabricating and providing the ODS steel for this study, Drs. Michael Fluss, Bill Choi, and Scott Tumey for carrying out the ion beam experiment at Saclay, France, and Mark Wall for TEM particle size distribution analyses. The author would also like to thank N.E. Teslich and R.J. Gross for TEM sample preparations.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Luke L. Hsiung.

Additional information

Manuscript submitted August 30, 2012.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hsiung, L.L. HRTEM Study of Irradiation-Induced Cavities in Oxide-Dispersed Ferritic Steel. Metall Mater Trans A 44, 4496–4504 (2013). https://doi.org/10.1007/s11661-013-1906-5

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-013-1906-5

Keywords

Navigation