A Next-Generation Hard X-Ray Nanoprobe Beamline for In Situ Studies of Energy Materials and Devices

Abstract

The Advanced Photon Source is developing a suite of new X-ray beamlines to study materials and devices across many length scales and under real conditions. One of the flagship beamlines of the APS upgrade is the In Situ Nanoprobe (ISN) beamline, which will provide in situ and operando characterization of advanced energy materials and devices under varying temperatures, gas ambients, and applied fields, at previously unavailable spatial resolution and throughput. Examples of materials systems include inorganic and organic photovoltaic systems, advanced battery systems, fuel cell components, nanoelectronic devices, advanced building materials and other scientifically and technologically relevant systems. To characterize these systems at very high spatial resolution and trace sensitivity, the ISN will use both nanofocusing mirrors and diffractive optics to achieve spots sizes as small as 20 nm. Nanofocusing mirrors in Kirkpatrick–Baez geometry will provide several orders of magnitude increase in photon flux at a spatial resolution of 50 nm. Diffractive optics such as zone plates and/or multilayer Laue lenses will provide a highest spatial resolution of 20 nm. Coherent diffraction methods will be used to study even small specimen features with sub-10 nm relevant length scale. A high-throughput data acquisition system will be employed to significantly increase operations efficiency and usability of the instrument. The ISN will provide full spectroscopy capabilities to study the chemical state of most materials in the periodic table, and enable X-ray fluorescence tomography. In situ electrical characterization will enable operando studies of energy and electronic devices such as photovoltaic systems and batteries. We describe the optical concept for the ISN beamline, the technical design, and the approach for enabling a broad variety of in situ studies. We furthermore discuss the application of hard X-ray microscopy to study defects in multi-crystalline solar cells, one of the lines of inquiries for which the ISN is being developed.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

References

  1. 1.

    J.M. Maser, R.P. Winarski, M. Holt, D. Shu, C. Benson, B. Tieman, C. Preissner, A. Smolyanitskiy, B. Lai, S. Vogt, G. Wiemerslage, and G.B. Stephenson: Proc. 8th Int. Conf. X-ray Microsc., IPAP Conf. Ser. 2006. Vol. 7, pp. 26–29.

  2. 2.

    S. Chen, C. Flachenecker, B. Lai, T. Paunesku, B. Hornberger, C. Roehrig, J. VonOsinski, M. Bolbat, J. Maser, D. Shu, L. Finney, S. Gleber, Q. Jin, K. Brister, C. Jacobsen, S. Vogt, and G. Woloschak: Microsc. Microanal., 2012, vol 18, 962–63.

    Article  Google Scholar 

  3. 3.

    R. P. Winarski, M. V. Holt, V. Rose, P. Fuesz, D. Carbaugh, C. Benson, D. Shu, D. Kline, G. B. Stephenson, I. McNulty, J. Maser: J. Synchrotron Rad., 2013, vol. 19 (6), 1056-1060.

    Article  Google Scholar 

  4. 4.

    C. G. Schroer, P. Boye, J. M. Feldkamp, J. Patommela, D. Samberg, A. Schropp, A. Schwab, S. Stephan, G. Falkenberg, G. Wellenreuther, and N. Reimers: Nucl. Instrum. Methods Phys. Res. A, 2010, vol. 616, 93.

    Article  Google Scholar 

  5. 5.

    P. Bleuet, P. Cloetens, P. Gergaud, D. Mariolle, N. Chevalier, R. Tucoulou, J. Susini, and A. Chabli: Rev. Sci. Instrum. 2009, vol. 80, 056101.

    Article  Google Scholar 

  6. 6.

    A. Somogyi, C. M. Kewish, F. Polack, and T. Moreno: AIP Conf. Proc., 2011. 1365, pp. 57-60.

    Article  Google Scholar 

  7. 7.

    Y.S. Chu: in Preliminary Design Report for the Hard X-ray (HXN) Nanoprobe Beamline. National Synchrotron Light Source II, Brookhaven National Laboratory, LT-C-XFD-HXN-PDR-001, 2010.

  8. 8.

    D. Oosterhout, M. M. Wienk, S. S. van Bavel, R. Thiedmann, L. J. A. Koster, J. Gilot, J. Loos, V. Schmidt, R. A. J. Janssen: Nature Mat. 2009, vol. 8, 818.

    Article  Google Scholar 

  9. 9.

    S. Hudelson, B.K. Newman, S. Bernardis, D.P. Fenning, M.I. Bertoni, M.A. Marcus, S.C. Fakra, B. Lai, and T. Buonassisi: Advanced Materials 2010, vol. 22, 39483953.

    Article  Google Scholar 

  10. 10.

    M.I. Bertoni, D.P. Fenning, M. Rinio, V. Rose, M. Holt, J. Maser, T. Buonassisi: Energy Environ. Sci., 2011, vol. 4, 4252-4257.

    Article  Google Scholar 

  11. 11.

    S. B. Darling: Energy Environ. Sci, 2009, vol. 2, 1266.

    Article  Google Scholar 

  12. 12.

    M. Nikiforov, B. Lai, W. Chen, S. Chen, R. D. Schaller, J. Strzalka, J. Maser, and S. B. Darling: Energy Environ. Sci, 2013, vol. 6, pp. 1513–20. DOI: 10.1039/c3ee40556g.

    Article  Google Scholar 

  13. 13.

    A. Faes, A. Hessler-Wyser, D. Presvytes, C.G. Vayenas, J. Van Herle, 2009, Fuel Cells 9(6): 841-851.

    Article  Google Scholar 

  14. 14.

    P. Tanasini, M. Cannarozzo, P. Costamagna, A. Faes, J. Van Herle, A. Hessler-Wyser, C. Comninellis: Fuel Cells, 2009, vol. 9(5): 740-752.

    Article  Google Scholar 

  15. 15.

    K. N. Grew, Y. S. Chu, J. Yi, A. A. Peracchio, J. R. Izzo, Jr., Y. Hwu, F. De Carlo, W. K. S. Chiua: Journal of The Electrochem. Society, 2010, vol. 157 (6), B783-B792.

    Article  Google Scholar 

  16. 16.

    C. J. Kiely, J. Fink, M. Brust, D. Bethel, D. J. Schiffrin: Nature, 1998, 396 , 444.

    Article  Google Scholar 

  17. 17.

    H. Xiong, M. Slater, M.D., Balasubramanian, C.S. Johnson, and T. Rajh: J. Phys. Chem. Let., 2011, vol. 2, 2560–2565.

    Article  Google Scholar 

  18. 18.

    H. Xiong, H. Yildirim, E. V. Shevchenko, V. B. Prakapenka, B. Koo, M. D. Slater, M. Balasubramanian, S. K. R. S. Sankaranarayanan, J. P. Greeley, S. Tepavcevic, N. M. Dimitrijevic, P. Podsiadlo, C. S. Johnson, T. Rajh: J. Phys. Chem. C, 2012, vol. 116 (4), pp 31813187.

    Article  Google Scholar 

  19. 19.

    Z. Tokei, K. Croes, G. Beyer, Microelectron. Eng., 2010, vol. 87, 348.

    Article  Google Scholar 

  20. 20.

    C. Lavoie, C. Detavernier, C. Cabral, Jr., F. d’Heurle, A. Kellock, J. Jordan-Sweet, J.M.E. Harper: Microelectron. Eng., 2006, vol. 83, 2042.

    Article  Google Scholar 

  21. 21.

    D. Mangelinck, K. Hoummada, O. Cojocaru-Miredin, E. Cadel, C. Perrin-Pellegrino, D. Blavette: Microelectron. Eng., 2008, vol. 85, 1995.

    Article  Google Scholar 

  22. 22.

    J. Schaeffer, D.C. Gilmer, C. Capasso, S. Kalput, B. Taylor, M. Raymond, D. Triyoso, R. Hedge, S. Samavedan, B.White, Jr.: Microelectron. Eng., 2007, vol. 84, 2196.

    Article  Google Scholar 

  23. 23.

    C. E. Murray, A. Ying, S.M. Polvino, I.C. Noyan, M. Holt, J. Maser: Appl. Phys., 2011, vol. 109, 083543-1.

    Google Scholar 

  24. 24.

    C. Shi, P.V. Krivenko, D.M. Roy: Alkali-Activated Cements and Concretes, 2006, Taylor & Francis, Abingdon, UK, 2006, 376 pp.

    Google Scholar 

  25. 25.

    J.L. Provis, V. Rose, S.A. Bernal, J.S.J. van Deventer: Langmuir, 2009, vol. 25, 11897.

    Article  Google Scholar 

  26. 26.

    J. Eun Oh, P. J.M. Monteiro, S. S. Jun, S. Choi, S. M. Clark. Cement and Concrete Research, 2010, vol 40 (2), 189-196.

    Article  Google Scholar 

  27. 27.

    C. R. Benitez-Nelson: Earth-Science Reviews, 2000, vol. 51, 109-135.

    Article  Google Scholar 

  28. 28.

    L.B. Skinner, S.R. Chae, C.J. Benmore, H.R. Wenk, and P. Monteiro: Phys. Rev. Lett., 2010, vol. 104(19), 195502.

    Google Scholar 

  29. 29.

    S. B. Baines, B. S. Twining, S. Vogt, W. M. Balch, N. S. Fisher, D. M. Nelson: Deep Sea Research II, 2010, vol. 58, 512-523.

    Article  Google Scholar 

  30. 30.

    J. L. Provis, V. Rose, R. P. Winarski, J.S.J van Deventer: Scripta Materialia, 2011, 65, 316.

    Article  Google Scholar 

  31. 31.

    J. Vila-Comamala, Y. Pan, J. Lombardo, W. M. Harris, W. K. Chiu, C. David and Y. Wang: J. Synchrotron Rad. (2012), vol. 19, 705-709.

    Article  Google Scholar 

  32. 32.

    J. Vila-Comamala, S. Gorelick, E. Färm, C. M. Kewish, A. Diaz, R. Barrett, V. A. Guzenko, M. Ritala, and C. David: Opt. Express, 2011, vol. 19, 175184.

    Article  Google Scholar 

  33. 33.

    H. Yan, V. Rose, D. Shu, E. Lima, H. C. Kang, R. Conley, C. Liu, N. Jahedi, A. T. Macrander, G. B. Stephenson, M. V. Holt, Y. S. Chu, M. Lu, J. Maser: Opt. Express, 2011,vo.. 19 (16), 15069-15076.

    Article  Google Scholar 

  34. 34.

    H. Mimura, S. Handa, T. Kimura, H. Yumoto, D. Yamakawa, H. Yokoyama, S. Matsuyama, K. Inagaki, K. Yamamura, Y. Sano, K. Tamasaku, Y. Nishino, M. Yabashi, T. Ishikawa and K. Yamauchi: Nature Physics, 2009, vol. 6(2), 122125.

    Article  Google Scholar 

  35. 35.

    W. Liu, G. E. Ice, L. Assoufid, C. Liu, B. Shi, R. Khachatryan, J. Qian, P. Zschack, J. Z. Tischler and J.-Y. Choi: J. Synchrotron Rad., 2011, vol. 18(4), 575579.

    Article  Google Scholar 

  36. 36.

    I. Peterson, B. Abbey, C.T. Putkunz, D.J. Vine, G.A. van Riessen, G.A. Cadenazzi, E. Balaur, R. Ryan, H.M. Quiney, I. McNulty, A.G. Peele, and K.A. Nugent: Optics Express, 2012, vol. 20 (22), pp. 24678-24685.

    Article  Google Scholar 

  37. 37.

    D. J. Vine, D. Pelliccia, C. Holzner, S. B. Baines, A. Berry, I. McNulty, S. Vogt, A. G. Peele, and K. A. Nugent: Optics Express, 2012, vol. 20 (16), pp. 18287-18296.

    Article  Google Scholar 

  38. 38.

    B. Stillwell, J.H. Grimmer, D. Pasholk, and E. Trakhtenberg: Proc. Int. Part. Accel. Conf. IPAC 2012. New Orleans, LA. 2012. p. 750.

  39. 39.

    H. Amick, M. Gendreau, T. Busch, and C. Gordon: in Buildings for Nanoscale Research and Beyond, SPIE, San Diego, CA. 2005, 1–13.

    Google Scholar 

  40. 40.

    J. Maser, B. Lai, W. Yun, S.D. Shastri, Z. Cai, W. Rodrigues, S. Xu, and E. Trakhtenberg: in Proc. SPIE., vol. 4783, D.C. Mancini, ed., 2002, pp. 74–81.

  41. 41.

    S.D. Shastri, J.M. Maser, B. Lai, J. Tys: Opt. Commun., 2001, vol. 197, pp. 1-3.

    Article  Google Scholar 

  42. 42.

    H. Chol Kang, H. Yan, R. P. Winarski, M.V. Holt, J. Maser, C. Liu, R. Conley, S. Vogt, A.T. Macrander, and G.B. Stephenson: Appl. Phys. Lett., 2008, vol. 92, pp. 221114-1.

    Article  Google Scholar 

  43. 43.

    J. Vila-Comamala, M. Wojcik, A. Diaz, M. Guizar-Sicairos, C. M. Kewish, S. Wang, and C. David: J. Synchrotron Rad, 2013, vol. 20, 434–40. DOI:10.1107/S090904951300263X.

    Google Scholar 

  44. 44.

    W. Liu, Rev. Sci. Inst. 2005, vol. 76, 113701.

    Article  Google Scholar 

  45. 45.

    F. Siewert, J. Buchheim, S. Boutet, G. J. Williams, P. A. Montanez, J. Krzywinski, and R. Signorato: Optics Express, 2012, vol. 20 no.4, 4525-4536.

    Article  Google Scholar 

  46. 46.

    G. Coletti, P.C.P. Bronsveld, G. Hahn, W. Warta, D. Macdonald, B. Ceccaroli, K. Wambach, N.L. Quang, and J.M. Fernandez, Advanced Functional Materials, 2011, vol. 21, 879–890.

    Article  Google Scholar 

  47. 47.

    R. Rocheleau, S. Hegedus, W. Buchanan, and R. Tullman: Proc. 19th IEEE Photovolt. Specialists Conf. 1987, pp. 699–704.

  48. 48.

    S.A. McHugo, A.C. Thompson, I. Périchaud, S. Martinuzzi, Appl. Phys. Lett., 1998, vol. 72, 3482–3484.

    Article  Google Scholar 

  49. 49.

    O.F. Vyvenko, T. Buonassisi, A.A. Istratov, E.R. Weber, M. Kittler, W. Seifert, J. Phys.: Condens. Matter., 2002, vol. 14, 1307913086.

    Article  Google Scholar 

  50. 50.

    S.A. McHugo, Appl. Phys. Lett., 1997, vol. 71, 19841986.

    Article  Google Scholar 

  51. 51.

    A.A. Istratov, T. Buonassisi, R.J. McDonald, A.R. Smith, R. Schindler, J.A. Rand, J.P. Kalejs, E.R. Weber, J. Appl. Phys., 2003, vol. 94 , 65526559.

    Article  Google Scholar 

  52. 52.

    Tonio Buonassisi, A.A. Istratov, M. Heuer, M.A. Marcus, R. Jonczyk, J. Isenberg, B. Lai, Z. Cai, S.M. Heald, W. Warta, R. Schindler, G. Willeke, E.R. Weber, J. Appl. Phys., 2005, vol 97, 074901.

    Article  Google Scholar 

  53. 53.

    M. Heuer, T. Buonassisi, A.A. Istratov, M.D. Pickett, M.A. Marcus, A.M. Minor, E.R. Weber, J. Appl. Phys., 2007, vol. 101, 123510.

    Article  Google Scholar 

  54. 54.

    T. Buonassisi, M. Heuer, A.A. Istratov, M.D. Pickett, M.A. Marcus, B. Lai, Z. Cai, S.M. Heald, E.R. Weber, Acta Materialia, 2007, vol. 55, 61196126..

    Article  Google Scholar 

  55. 55.

    T. Buonassisi, A.A. Istratov, M.A. Marcus, B. Lai, Z. Cai, S.M. Heald, E.R. Weber, Nature Materials, 2005, vol. 4 , 676679.

    Article  Google Scholar 

  56. 56.

    T. Buonassisi, A.A. Istratov, M.D. Pickett, M. Heuer, J.P. Kalejs, G. Hahn, M.A. Marcus, B. Lai, Z. Cai, S.M. Heald, T.F. Ciszek, R.F. Clark, D.W. Cunningham, A.M. Gabor, R. Jonczyk, S. Narayanan, E. Sauar, and E.R. Weber, Prog. Photovolt: Res. Appl., 2006, vol. 14, 513531.

    Article  Google Scholar 

  57. 57.

    J. Schön, H. Habenich, M.C. Schubert, and W. Warta, J. Appl. Phys., 2011, vol.109, 063717.

    Article  Google Scholar 

  58. 58.

    J. Hofstetter, D.P. Fenning, M.I. Bertoni, J.F. Lelièvre, C. del Cañizo, and T. Buonassisi, Prog. in Photovolt., 2011, vol. 19, 487497.

    Article  Google Scholar 

  59. 59.

    D. Macdonald, S.P. Phang, F.E. Rougieux, S.Y. Lim, D. Paterson, D.L. Howard, M.D. de Jonge, C.G. Ryan, Semicond. Sci. Technol., 2012, vol. 27, 125016.

    Article  Google Scholar 

  60. 60.

    D.P. Fenning, J. Hofstetter, M.I. Bertoni, G. Coletti, B. Lai, C. del Cañizo, and T. Buonassisi, J. Appl. Phys., 2013, vol. 113, 044521.

    Article  Google Scholar 

  61. 61.

    D.M. Powell, D.P. Fenning, J. Hofstetter, J.F. Lelièvre, C. del Cañizo, and T. Buonassisi: Proc. 37th IEEE Photovoltaic Specialists Conference, Seattle, WA, 2011.

  62. 62.

    T. Buonassisi, O.F. Vyvenko, A.A. Istratov, E.R. Weber, G. Hahn, D. Sontag, J.P. Rakotoniaina, O. Breitenstein, J. Isenberg, R. Schindler, J. Appl. Phys., 2004, vol. 95, 15561561.

    Article  Google Scholar 

  63. 63.

    W. Kwapil, P. Gundel, M.C. Schubert, F.D. Heinz, W. Warta, E.R. Weber, A. Goetzberger, G. Martinez-Criado, Appl. Phys. Lett., 2009, vol.95, 232113.

    Article  Google Scholar 

  64. 64.

    T. Buonassisi, A.A. Istratov, M.D. Pickett, J.-P. Rakotoniaina, O. Breitenstein, M.A. Marcus, S.M. Heald, E.R. Weber, J. Cryst. Growth, 2006, vol. 287, 402407.

    Article  Google Scholar 

  65. 65.

    T. Buonassisi, A.A. Istratov, M.D. Pickett, M.A. Marcus, T.F. Ciszek, E.R. Weber, Appl. Phys. Lett., 2006, vol. 89, 042102..

    Article  Google Scholar 

  66. 66.

    M.I. Bertoni, D.P. Fenning, M. Rinio, V. Rose, M. Holt, J. Maser, T. Buonassisi, Energy & Environmental Science, 2011, vol. 4, 42524257.

    Article  Google Scholar 

  67. 67.

    S. Hudelson, B.K. Newman, S. Bernardis, D.P. Fenning, M.I. Bertoni, M.A. Marcus, S.C. Fakra, B. Lai, and T. Buonassisi, Adv. Mater., 2010, vol. 22, 3948–53.

    Article  Google Scholar 

  68. 68.

    O.F. Vyvenko, T. Buonassisi, A.A. Istratov, H. Hieslmair, A.C. Thompson, R. Schindler, E.R. Weber, J. Appl. Phys., 2002, vol. 91, 36143617.

    Article  Google Scholar 

  69. 69.

    T. Buonassisi, A.A. Istratov, M.D. Pickett, M.A. Marcus, G. Hahn, S. Riepe, J. Isenberg, W. Warta, G. Willeke, T.F. Ciszek, E.R. Weber, Appl. Phys. Lett., 2005, vol. 87, 044101.

    Article  Google Scholar 

  70. 70.

    P. Gundel, G. Martinez-Criado, M.C. Schubert, J.A. Sans, W. Kwapil, W. Warta, E.R. Weber, Phys. Status Solidi RRL, 2009, vol. 3, 275277.

    Article  Google Scholar 

  71. 71.

    O. Vyvenko, T. Arguirov, W. Seifert, I. Zizak, M. Trushin, M. Kittler, Phys. Status Solidi A, 2010, vol. 207, 19401943.

    Article  Google Scholar 

  72. 72.

    D.B. Mitzi, O. Gunawan, T.K. Todorov, K. Wang, S. Guha, Sol. Energy Mater. Sol. Cells, 2011, vol. 95, 1421.

    Article  Google Scholar 

  73. 73.

    A. Chirila, S. Buecheler, F. Pianezzi, P. Bloesch, C. Gretener, A.R. Uhl, C. Fella, L. Kranz, J. Perrenoud, S. Seyrling, R. Verma, S. Nishiwaki, Y.E. Romanyuk, G. Bilger, A.N. Tiwari, Nature Materials, 2011, vol. 10, 857861.

    Article  Google Scholar 

  74. 74.

    M.A. Contreras, L.M. Mansfield, B. Egaas, J. Li, M. Romero, R. Noufi, E. Rudiger-Voigt, W. Mannstadt, Prog. Photovolt., 2012, vol. 20, 843850.

    Article  Google Scholar 

  75. 75.

    T. Buonassisi, A.A. Istratov, S. Peters, C. Ballif, J. Isenberg, S. Riepe, W. Warta, R. Schindler, G. Willeke, Z. Cai, B. Lai, E. R. Weber, Appl. Phys. Lett., 2005, vol. 87, 121918.

    Article  Google Scholar 

Download references

Acknowledgments

We thank Wenjun Liu for continued productive discussions on nanofocusing mirrors and nanopositioning. We thank Oliver Schmidt for his help in beamline design work, Roger Dejus for preparing tuning curves for the ISN undulator, and Lahsen Assoufid for his suggestions on X-ray mirrors. We furthermore thank our colleagues Seth Darling, Conal Murray, Tijana Rajh, Wilson Chiu, Ken Kemner, Paolo Monteiro, Ellery Ingall, Yong Chu, and Hanfei Yan for their valuable scientific and technical discussions, and their continued engagement in the ISN facility. T.B. acknowledges funding from U.S. Department of Energy SunShot Initiative under Contracts No. DE-EE0005314, DE-EE0005329, and DE-EE0005948. Use of the Advanced Photon Source (APS) at Argonne National Laboratory was supported by the US Department of Energy, Office of Science, Office of Basic Energy Sciences, under Contract No. DE-AC02-06CH11357.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Jörg Maser.

Additional information

Manuscript submitted March 1, 2013.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Maser, J., Lai, B., Buonassisi, T. et al. A Next-Generation Hard X-Ray Nanoprobe Beamline for In Situ Studies of Energy Materials and Devices. Metall Mater Trans A 45, 85–97 (2014). https://doi.org/10.1007/s11661-013-1901-x

Download citation

Keywords

  • Mirror System
  • Diffractive Optic
  • Advance Photon Source
  • Insertion Device
  • Double Crystal Monochromator