Metallurgical and Materials Transactions A

, Volume 45, Issue 1, pp 85–97 | Cite as

A Next-Generation Hard X-Ray Nanoprobe Beamline for In Situ Studies of Energy Materials and Devices

  • Jörg MaserEmail author
  • Barry Lai
  • Tonio Buonassisi
  • Zhonghou Cai
  • Si Chen
  • Lydia Finney
  • Sophie-Charlotte Gleber
  • Chris Jacobsen
  • Curt Preissner
  • Chris Roehrig
  • Volker Rose
  • Deming Shu
  • David Vine
  • Stefan Vogt
Symposium: Neutron and X-Ray Studies of Advanced Materials VI: Diffraction Centennial and Beyond


The Advanced Photon Source is developing a suite of new X-ray beamlines to study materials and devices across many length scales and under real conditions. One of the flagship beamlines of the APS upgrade is the In Situ Nanoprobe (ISN) beamline, which will provide in situ and operando characterization of advanced energy materials and devices under varying temperatures, gas ambients, and applied fields, at previously unavailable spatial resolution and throughput. Examples of materials systems include inorganic and organic photovoltaic systems, advanced battery systems, fuel cell components, nanoelectronic devices, advanced building materials and other scientifically and technologically relevant systems. To characterize these systems at very high spatial resolution and trace sensitivity, the ISN will use both nanofocusing mirrors and diffractive optics to achieve spots sizes as small as 20 nm. Nanofocusing mirrors in Kirkpatrick–Baez geometry will provide several orders of magnitude increase in photon flux at a spatial resolution of 50 nm. Diffractive optics such as zone plates and/or multilayer Laue lenses will provide a highest spatial resolution of 20 nm. Coherent diffraction methods will be used to study even small specimen features with sub-10 nm relevant length scale. A high-throughput data acquisition system will be employed to significantly increase operations efficiency and usability of the instrument. The ISN will provide full spectroscopy capabilities to study the chemical state of most materials in the periodic table, and enable X-ray fluorescence tomography. In situ electrical characterization will enable operando studies of energy and electronic devices such as photovoltaic systems and batteries. We describe the optical concept for the ISN beamline, the technical design, and the approach for enabling a broad variety of in situ studies. We furthermore discuss the application of hard X-ray microscopy to study defects in multi-crystalline solar cells, one of the lines of inquiries for which the ISN is being developed.


Mirror System Diffractive Optic Advance Photon Source Insertion Device Double Crystal Monochromator 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



We thank Wenjun Liu for continued productive discussions on nanofocusing mirrors and nanopositioning. We thank Oliver Schmidt for his help in beamline design work, Roger Dejus for preparing tuning curves for the ISN undulator, and Lahsen Assoufid for his suggestions on X-ray mirrors. We furthermore thank our colleagues Seth Darling, Conal Murray, Tijana Rajh, Wilson Chiu, Ken Kemner, Paolo Monteiro, Ellery Ingall, Yong Chu, and Hanfei Yan for their valuable scientific and technical discussions, and their continued engagement in the ISN facility. T.B. acknowledges funding from U.S. Department of Energy SunShot Initiative under Contracts No. DE-EE0005314, DE-EE0005329, and DE-EE0005948. Use of the Advanced Photon Source (APS) at Argonne National Laboratory was supported by the US Department of Energy, Office of Science, Office of Basic Energy Sciences, under Contract No. DE-AC02-06CH11357.


  1. 1.
    J.M. Maser, R.P. Winarski, M. Holt, D. Shu, C. Benson, B. Tieman, C. Preissner, A. Smolyanitskiy, B. Lai, S. Vogt, G. Wiemerslage, and G.B. Stephenson: Proc. 8th Int. Conf. X-ray Microsc., IPAP Conf. Ser. 2006. Vol. 7, pp. 26–29.Google Scholar
  2. 2.
    S. Chen, C. Flachenecker, B. Lai, T. Paunesku, B. Hornberger, C. Roehrig, J. VonOsinski, M. Bolbat, J. Maser, D. Shu, L. Finney, S. Gleber, Q. Jin, K. Brister, C. Jacobsen, S. Vogt, and G. Woloschak: Microsc. Microanal., 2012, vol 18, 962–63.CrossRefGoogle Scholar
  3. 3.
    R. P. Winarski, M. V. Holt, V. Rose, P. Fuesz, D. Carbaugh, C. Benson, D. Shu, D. Kline, G. B. Stephenson, I. McNulty, J. Maser: J. Synchrotron Rad., 2013, vol. 19 (6), 1056-1060. CrossRefGoogle Scholar
  4. 4.
    C. G. Schroer, P. Boye, J. M. Feldkamp, J. Patommela, D. Samberg, A. Schropp, A. Schwab, S. Stephan, G. Falkenberg, G. Wellenreuther, and N. Reimers: Nucl. Instrum. Methods Phys. Res. A, 2010, vol. 616, 93.CrossRefGoogle Scholar
  5. 5.
    P. Bleuet, P. Cloetens, P. Gergaud, D. Mariolle, N. Chevalier, R. Tucoulou, J. Susini, and A. Chabli: Rev. Sci. Instrum. 2009, vol. 80, 056101. CrossRefGoogle Scholar
  6. 6.
    A. Somogyi, C. M. Kewish, F. Polack, and T. Moreno: AIP Conf. Proc., 2011. 1365, pp. 57-60. CrossRefGoogle Scholar
  7. 7.
    Y.S. Chu: in Preliminary Design Report for the Hard X-ray (HXN) Nanoprobe Beamline. National Synchrotron Light Source II, Brookhaven National Laboratory, LT-C-XFD-HXN-PDR-001, 2010.Google Scholar
  8. 8.
    D. Oosterhout, M. M. Wienk, S. S. van Bavel, R. Thiedmann, L. J. A. Koster, J. Gilot, J. Loos, V. Schmidt, R. A. J. Janssen: Nature Mat. 2009, vol. 8, 818. CrossRefGoogle Scholar
  9. 9.
    S. Hudelson, B.K. Newman, S. Bernardis, D.P. Fenning, M.I. Bertoni, M.A. Marcus, S.C. Fakra, B. Lai, and T. Buonassisi: Advanced Materials 2010, vol. 22, 39483953. CrossRefGoogle Scholar
  10. 10.
    M.I. Bertoni, D.P. Fenning, M. Rinio, V. Rose, M. Holt, J. Maser, T. Buonassisi: Energy Environ. Sci., 2011, vol. 4, 4252-4257. CrossRefGoogle Scholar
  11. 11.
    S. B. Darling: Energy Environ. Sci, 2009, vol. 2, 1266. CrossRefGoogle Scholar
  12. 12.
    M. Nikiforov, B. Lai, W. Chen, S. Chen, R. D. Schaller, J. Strzalka, J. Maser, and S. B. Darling: Energy Environ. Sci, 2013, vol. 6, pp. 1513–20. DOI:  10.1039/c3ee40556g.CrossRefGoogle Scholar
  13. 13.
    A. Faes, A. Hessler-Wyser, D. Presvytes, C.G. Vayenas, J. Van Herle, 2009, Fuel Cells 9(6): 841-851.CrossRefGoogle Scholar
  14. 14.
    P. Tanasini, M. Cannarozzo, P. Costamagna, A. Faes, J. Van Herle, A. Hessler-Wyser, C. Comninellis: Fuel Cells, 2009, vol. 9(5): 740-752. CrossRefGoogle Scholar
  15. 15.
    K. N. Grew, Y. S. Chu, J. Yi, A. A. Peracchio, J. R. Izzo, Jr., Y. Hwu, F. De Carlo, W. K. S. Chiua: Journal of The Electrochem. Society, 2010, vol. 157 (6), B783-B792. CrossRefGoogle Scholar
  16. 16.
    C. J. Kiely, J. Fink, M. Brust, D. Bethel, D. J. Schiffrin: Nature, 1998, 396 , 444. CrossRefGoogle Scholar
  17. 17.
    H. Xiong, M. Slater, M.D., Balasubramanian, C.S. Johnson, and T. Rajh: J. Phys. Chem. Let., 2011, vol. 2, 2560–2565.CrossRefGoogle Scholar
  18. 18.
    H. Xiong, H. Yildirim, E. V. Shevchenko, V. B. Prakapenka, B. Koo, M. D. Slater, M. Balasubramanian, S. K. R. S. Sankaranarayanan, J. P. Greeley, S. Tepavcevic, N. M. Dimitrijevic, P. Podsiadlo, C. S. Johnson, T. Rajh: J. Phys. Chem. C, 2012, vol. 116 (4), pp 31813187. CrossRefGoogle Scholar
  19. 19.
    Z. Tokei, K. Croes, G. Beyer, Microelectron. Eng., 2010, vol. 87, 348. CrossRefGoogle Scholar
  20. 20.
    C. Lavoie, C. Detavernier, C. Cabral, Jr., F. d’Heurle, A. Kellock, J. Jordan-Sweet, J.M.E. Harper: Microelectron. Eng., 2006, vol. 83, 2042. CrossRefGoogle Scholar
  21. 21.
    D. Mangelinck, K. Hoummada, O. Cojocaru-Miredin, E. Cadel, C. Perrin-Pellegrino, D. Blavette: Microelectron. Eng., 2008, vol. 85, 1995. CrossRefGoogle Scholar
  22. 22.
    J. Schaeffer, D.C. Gilmer, C. Capasso, S. Kalput, B. Taylor, M. Raymond, D. Triyoso, R. Hedge, S. Samavedan, B.White, Jr.: Microelectron. Eng., 2007, vol. 84, 2196. CrossRefGoogle Scholar
  23. 23.
    C. E. Murray, A. Ying, S.M. Polvino, I.C. Noyan, M. Holt, J. Maser: Appl. Phys., 2011, vol. 109, 083543-1.Google Scholar
  24. 24.
    C. Shi, P.V. Krivenko, D.M. Roy: Alkali-Activated Cements and Concretes, 2006, Taylor & Francis, Abingdon, UK, 2006, 376 pp. CrossRefGoogle Scholar
  25. 25.
    J.L. Provis, V. Rose, S.A. Bernal, J.S.J. van Deventer: Langmuir, 2009, vol. 25, 11897. CrossRefGoogle Scholar
  26. 26.
    J. Eun Oh, P. J.M. Monteiro, S. S. Jun, S. Choi, S. M. Clark. Cement and Concrete Research, 2010, vol 40 (2), 189-196. CrossRefGoogle Scholar
  27. 27.
    C. R. Benitez-Nelson: Earth-Science Reviews, 2000, vol. 51, 109-135. CrossRefGoogle Scholar
  28. 28.
    L.B. Skinner, S.R. Chae, C.J. Benmore, H.R. Wenk, and P. Monteiro: Phys. Rev. Lett., 2010, vol. 104(19), 195502.Google Scholar
  29. 29.
    S. B. Baines, B. S. Twining, S. Vogt, W. M. Balch, N. S. Fisher, D. M. Nelson: Deep Sea Research II, 2010, vol. 58, 512-523. CrossRefGoogle Scholar
  30. 30.
    J. L. Provis, V. Rose, R. P. Winarski, J.S.J van Deventer: Scripta Materialia, 2011, 65, 316. CrossRefGoogle Scholar
  31. 31.
    J. Vila-Comamala, Y. Pan, J. Lombardo, W. M. Harris, W. K. Chiu, C. David and Y. Wang: J. Synchrotron Rad. (2012), vol. 19, 705-709. CrossRefGoogle Scholar
  32. 32.
    J. Vila-Comamala, S. Gorelick, E. Färm, C. M. Kewish, A. Diaz, R. Barrett, V. A. Guzenko, M. Ritala, and C. David: Opt. Express, 2011, vol. 19, 175184. CrossRefGoogle Scholar
  33. 33.
    H. Yan, V. Rose, D. Shu, E. Lima, H. C. Kang, R. Conley, C. Liu, N. Jahedi, A. T. Macrander, G. B. Stephenson, M. V. Holt, Y. S. Chu, M. Lu, J. Maser: Opt. Express, 2011,vo.. 19 (16), 15069-15076.CrossRefGoogle Scholar
  34. 34.
    H. Mimura, S. Handa, T. Kimura, H. Yumoto, D. Yamakawa, H. Yokoyama, S. Matsuyama, K. Inagaki, K. Yamamura, Y. Sano, K. Tamasaku, Y. Nishino, M. Yabashi, T. Ishikawa and K. Yamauchi: Nature Physics, 2009, vol. 6(2), 122125. CrossRefGoogle Scholar
  35. 35.
    W. Liu, G. E. Ice, L. Assoufid, C. Liu, B. Shi, R. Khachatryan, J. Qian, P. Zschack, J. Z. Tischler and J.-Y. Choi: J. Synchrotron Rad., 2011, vol. 18(4), 575579. CrossRefGoogle Scholar
  36. 36.
    I. Peterson, B. Abbey, C.T. Putkunz, D.J. Vine, G.A. van Riessen, G.A. Cadenazzi, E. Balaur, R. Ryan, H.M. Quiney, I. McNulty, A.G. Peele, and K.A. Nugent: Optics Express, 2012, vol. 20 (22), pp. 24678-24685.CrossRefGoogle Scholar
  37. 37.
    D. J. Vine, D. Pelliccia, C. Holzner, S. B. Baines, A. Berry, I. McNulty, S. Vogt, A. G. Peele, and K. A. Nugent: Optics Express, 2012, vol. 20 (16), pp. 18287-18296. CrossRefGoogle Scholar
  38. 38.
    B. Stillwell, J.H. Grimmer, D. Pasholk, and E. Trakhtenberg: Proc. Int. Part. Accel. Conf. IPAC 2012. New Orleans, LA. 2012. p. 750.Google Scholar
  39. 39.
    H. Amick, M. Gendreau, T. Busch, and C. Gordon: in Buildings for Nanoscale Research and Beyond, SPIE, San Diego, CA. 2005, 1–13.Google Scholar
  40. 40.
    J. Maser, B. Lai, W. Yun, S.D. Shastri, Z. Cai, W. Rodrigues, S. Xu, and E. Trakhtenberg: in Proc. SPIE., vol. 4783, D.C. Mancini, ed., 2002, pp. 74–81.Google Scholar
  41. 41.
    S.D. Shastri, J.M. Maser, B. Lai, J. Tys: Opt. Commun., 2001, vol. 197, pp. 1-3.CrossRefGoogle Scholar
  42. 42.
    H. Chol Kang, H. Yan, R. P. Winarski, M.V. Holt, J. Maser, C. Liu, R. Conley, S. Vogt, A.T. Macrander, and G.B. Stephenson: Appl. Phys. Lett., 2008, vol. 92, pp. 221114-1.CrossRefGoogle Scholar
  43. 43.
    J. Vila-Comamala, M. Wojcik, A. Diaz, M. Guizar-Sicairos, C. M. Kewish, S. Wang, and C. David: J. Synchrotron Rad, 2013, vol. 20, 434–40. DOI: 10.1107/S090904951300263X.Google Scholar
  44. 44.
    W. Liu, Rev. Sci. Inst. 2005, vol. 76, 113701.CrossRefGoogle Scholar
  45. 45.
    F. Siewert, J. Buchheim, S. Boutet, G. J. Williams, P. A. Montanez, J. Krzywinski, and R. Signorato: Optics Express, 2012, vol. 20 no.4, 4525-4536. CrossRefGoogle Scholar
  46. 46.
    G. Coletti, P.C.P. Bronsveld, G. Hahn, W. Warta, D. Macdonald, B. Ceccaroli, K. Wambach, N.L. Quang, and J.M. Fernandez, Advanced Functional Materials, 2011, vol. 21, 879–890.CrossRefGoogle Scholar
  47. 47.
    R. Rocheleau, S. Hegedus, W. Buchanan, and R. Tullman: Proc. 19th IEEE Photovolt. Specialists Conf. 1987, pp. 699–704.Google Scholar
  48. 48.
    S.A. McHugo, A.C. Thompson, I. Périchaud, S. Martinuzzi, Appl. Phys. Lett., 1998, vol. 72, 3482–3484.CrossRefGoogle Scholar
  49. 49.
    O.F. Vyvenko, T. Buonassisi, A.A. Istratov, E.R. Weber, M. Kittler, W. Seifert, J. Phys.: Condens. Matter., 2002, vol. 14, 1307913086. CrossRefGoogle Scholar
  50. 50.
    S.A. McHugo, Appl. Phys. Lett., 1997, vol. 71, 19841986. CrossRefGoogle Scholar
  51. 51.
    A.A. Istratov, T. Buonassisi, R.J. McDonald, A.R. Smith, R. Schindler, J.A. Rand, J.P. Kalejs, E.R. Weber, J. Appl. Phys., 2003, vol. 94 , 65526559. CrossRefGoogle Scholar
  52. 52.
    Tonio Buonassisi, A.A. Istratov, M. Heuer, M.A. Marcus, R. Jonczyk, J. Isenberg, B. Lai, Z. Cai, S.M. Heald, W. Warta, R. Schindler, G. Willeke, E.R. Weber, J. Appl. Phys., 2005, vol 97, 074901. CrossRefGoogle Scholar
  53. 53.
    M. Heuer, T. Buonassisi, A.A. Istratov, M.D. Pickett, M.A. Marcus, A.M. Minor, E.R. Weber, J. Appl. Phys., 2007, vol. 101, 123510. CrossRefGoogle Scholar
  54. 54.
    T. Buonassisi, M. Heuer, A.A. Istratov, M.D. Pickett, M.A. Marcus, B. Lai, Z. Cai, S.M. Heald, E.R. Weber, Acta Materialia, 2007, vol. 55, 61196126..CrossRefGoogle Scholar
  55. 55.
    T. Buonassisi, A.A. Istratov, M.A. Marcus, B. Lai, Z. Cai, S.M. Heald, E.R. Weber, Nature Materials, 2005, vol. 4 , 676679.CrossRefGoogle Scholar
  56. 56.
    T. Buonassisi, A.A. Istratov, M.D. Pickett, M. Heuer, J.P. Kalejs, G. Hahn, M.A. Marcus, B. Lai, Z. Cai, S.M. Heald, T.F. Ciszek, R.F. Clark, D.W. Cunningham, A.M. Gabor, R. Jonczyk, S. Narayanan, E. Sauar, and E.R. Weber, Prog. Photovolt: Res. Appl., 2006, vol. 14, 513531. CrossRefGoogle Scholar
  57. 57.
    J. Schön, H. Habenich, M.C. Schubert, and W. Warta, J. Appl. Phys., 2011, vol.109, 063717. CrossRefGoogle Scholar
  58. 58.
    J. Hofstetter, D.P. Fenning, M.I. Bertoni, J.F. Lelièvre, C. del Cañizo, and T. Buonassisi, Prog. in Photovolt., 2011, vol. 19, 487497.CrossRefGoogle Scholar
  59. 59.
    D. Macdonald, S.P. Phang, F.E. Rougieux, S.Y. Lim, D. Paterson, D.L. Howard, M.D. de Jonge, C.G. Ryan, Semicond. Sci. Technol., 2012, vol. 27, 125016. CrossRefGoogle Scholar
  60. 60.
    D.P. Fenning, J. Hofstetter, M.I. Bertoni, G. Coletti, B. Lai, C. del Cañizo, and T. Buonassisi, J. Appl. Phys., 2013, vol. 113, 044521.CrossRefGoogle Scholar
  61. 61.
    D.M. Powell, D.P. Fenning, J. Hofstetter, J.F. Lelièvre, C. del Cañizo, and T. Buonassisi: Proc. 37th IEEE Photovoltaic Specialists Conference, Seattle, WA, 2011.Google Scholar
  62. 62.
    T. Buonassisi, O.F. Vyvenko, A.A. Istratov, E.R. Weber, G. Hahn, D. Sontag, J.P. Rakotoniaina, O. Breitenstein, J. Isenberg, R. Schindler, J. Appl. Phys., 2004, vol. 95, 15561561.CrossRefGoogle Scholar
  63. 63.
    W. Kwapil, P. Gundel, M.C. Schubert, F.D. Heinz, W. Warta, E.R. Weber, A. Goetzberger, G. Martinez-Criado, Appl. Phys. Lett., 2009, vol.95, 232113.CrossRefGoogle Scholar
  64. 64.
    T. Buonassisi, A.A. Istratov, M.D. Pickett, J.-P. Rakotoniaina, O. Breitenstein, M.A. Marcus, S.M. Heald, E.R. Weber, J. Cryst. Growth, 2006, vol. 287, 402407.CrossRefGoogle Scholar
  65. 65.
    T. Buonassisi, A.A. Istratov, M.D. Pickett, M.A. Marcus, T.F. Ciszek, E.R. Weber, Appl. Phys. Lett., 2006, vol. 89, 042102.. CrossRefGoogle Scholar
  66. 66.
    M.I. Bertoni, D.P. Fenning, M. Rinio, V. Rose, M. Holt, J. Maser, T. Buonassisi, Energy & Environmental Science, 2011, vol. 4, 42524257. CrossRefGoogle Scholar
  67. 67.
    S. Hudelson, B.K. Newman, S. Bernardis, D.P. Fenning, M.I. Bertoni, M.A. Marcus, S.C. Fakra, B. Lai, and T. Buonassisi, Adv. Mater., 2010, vol. 22, 3948–53.CrossRefGoogle Scholar
  68. 68.
    O.F. Vyvenko, T. Buonassisi, A.A. Istratov, H. Hieslmair, A.C. Thompson, R. Schindler, E.R. Weber, J. Appl. Phys., 2002, vol. 91, 36143617.CrossRefGoogle Scholar
  69. 69.
    T. Buonassisi, A.A. Istratov, M.D. Pickett, M.A. Marcus, G. Hahn, S. Riepe, J. Isenberg, W. Warta, G. Willeke, T.F. Ciszek, E.R. Weber, Appl. Phys. Lett., 2005, vol. 87, 044101.CrossRefGoogle Scholar
  70. 70.
    P. Gundel, G. Martinez-Criado, M.C. Schubert, J.A. Sans, W. Kwapil, W. Warta, E.R. Weber, Phys. Status Solidi RRL, 2009, vol. 3, 275277. CrossRefGoogle Scholar
  71. 71.
    O. Vyvenko, T. Arguirov, W. Seifert, I. Zizak, M. Trushin, M. Kittler, Phys. Status Solidi A, 2010, vol. 207, 19401943.CrossRefGoogle Scholar
  72. 72.
    D.B. Mitzi, O. Gunawan, T.K. Todorov, K. Wang, S. Guha, Sol. Energy Mater. Sol. Cells, 2011, vol. 95, 1421. CrossRefGoogle Scholar
  73. 73.
    A. Chirila, S. Buecheler, F. Pianezzi, P. Bloesch, C. Gretener, A.R. Uhl, C. Fella, L. Kranz, J. Perrenoud, S. Seyrling, R. Verma, S. Nishiwaki, Y.E. Romanyuk, G. Bilger, A.N. Tiwari, Nature Materials, 2011, vol. 10, 857861. CrossRefGoogle Scholar
  74. 74.
    M.A. Contreras, L.M. Mansfield, B. Egaas, J. Li, M. Romero, R. Noufi, E. Rudiger-Voigt, W. Mannstadt, Prog. Photovolt., 2012, vol. 20, 843850. CrossRefGoogle Scholar
  75. 75.
    T. Buonassisi, A.A. Istratov, S. Peters, C. Ballif, J. Isenberg, S. Riepe, W. Warta, R. Schindler, G. Willeke, Z. Cai, B. Lai, E. R. Weber, Appl. Phys. Lett., 2005, vol. 87, 121918. CrossRefGoogle Scholar

Copyright information

© The Minerals, Metals & Materials Society and ASM International 2013

Authors and Affiliations

  • Jörg Maser
    • 1
    Email author
  • Barry Lai
    • 1
  • Tonio Buonassisi
    • 2
  • Zhonghou Cai
    • 1
  • Si Chen
    • 1
  • Lydia Finney
    • 1
  • Sophie-Charlotte Gleber
    • 1
  • Chris Jacobsen
    • 1
  • Curt Preissner
    • 1
  • Chris Roehrig
    • 1
  • Volker Rose
    • 1
  • Deming Shu
    • 1
  • David Vine
    • 1
  • Stefan Vogt
    • 1
  1. 1.Argonne National LabArgonneUSA
  2. 2.Massachusetts Institute of TechnologyCambridgeUSA

Personalised recommendations