Metallurgical and Materials Transactions A

, Volume 44, Issue 12, pp 5611–5616 | Cite as

Thermal Stability of Nanocrystalline Copper Alloyed with Antimony

  • Mark A. Atwater
  • Suhrit Mula
  • Ronald O. Scattergood
  • Carl C. Koch


Nanocrystalline copper (Cu) was generated by cryogenic, high-energy ball milling. Antimony (Sb) was added to investigate its utility in stabilizing the grain structure during annealing up to a maximum temperature of 1073 K (800 °C). When alloyed with Sb in quantities up to 1 at. pct, thermal stability was maintained up to 673 K (400 °C). Cu and Sb have very different molar volumes which can drive segregation of the solute due to the elastic strain energy and hence stabilize the grain size by reducing grain boundary energy. The elastic mismatch of Sb in Cu is calculated to be quite large (113 kJ/mol) when molar volume is used, but when an equivalent equation using atomic radius is applied, the driving force is nearly an order of magnitude lower (~12 kJ/mol). The low elastic mismatch is corroborated by the large equilibrium solubility of Sb in Cu. The results for the Cu-Sb system are compared to the nanocrystalline Ni-W system and the large amount of equilibrium solubility of the solute in both cases is thought to hinder thermal stabilization since segregation is not strongly favored.


Molecular Dynamic Simulation Molar Volume Solute Atom Size Stability Elastic Contribution 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



The authors wish to acknowledge the support of this research by the Office of Naval Research under grant number N00014-10-1-0168.


  1. 1.
    R.K. Rajgarhia, A. Saxena, D.E. Spearot, K.T. Hartwig, K.L. Moore, E.A. Kenik, and H. Meyer: J. Mater. Sci., 2010, vol. 45, pp. 6707–18.CrossRefGoogle Scholar
  2. 2.
    R.K. Rajgarhia, D.E. Spearot, and A. Saxena: J. Mater. Res., 2010, vol. 25, pp. 411–21.CrossRefGoogle Scholar
  3. 3.
    R.K. Rajgarhia, D.E. Spearot, and A. Saxena: JOM, 2010, vol. 62, pp. 70–74.CrossRefGoogle Scholar
  4. 4.
    W.A. Rachinger: J. Sci. Instrum., 1948, vol. 25, p. 254.CrossRefGoogle Scholar
  5. 5.
    B.D. Cullity and S.R. Stock: Elements of X-Ray Diffraction 2001, Prentice Hall, Upper Saddle River, 2001, p. 170.Google Scholar
  6. 6.
    W.J. Poole, M.F. Ashby, and N.A. Fleck: Scripta Mater., 1996, vol. 34, pp. 559–64.CrossRefGoogle Scholar
  7. 7.
    J. Weissmuller: J. Mater. Res., 1994, vol. 9, pp. 4–7.CrossRefGoogle Scholar
  8. 8.
    P. Wynblatt and R.C. Ku: Surf. Sci., 1977, vol. 65, pp. 511–31.CrossRefGoogle Scholar
  9. 9.
    F. Liu and R. Kirchheim: Scripta Mater., 2004, vol. 51, pp. 521–25.CrossRefGoogle Scholar
  10. 10.
    J.R. Trelewicz and C.A. Schuh: Phys. Rev. B, 2009, vol. 79, pp. 1–13.CrossRefGoogle Scholar
  11. 11.
    X.J. Liu, C.P. Wang, I. Ohnuma, R. Kainuma, and K. Ishida: J. Phase Equilib., 2000, vol. 21, pp. 432–42.CrossRefGoogle Scholar
  12. 12.
    M.A. Atwater, H. Bahmanpour, R.O. Scattergood, and C.C. Koch: J. Mater. Sci., 2013, vol. 48, pp. 220–26.CrossRefGoogle Scholar
  13. 13.
    M.A. Atwater, R.O. Scattergood, and C.C. Koch: Mater. Sci. Eng. A, 2013, vol. 559, pp. 250–56.CrossRefGoogle Scholar
  14. 14.
    E. Botcharova, J. Freudenberger, and L. Schultz: J. Mater. Sci., 2004, vol. 39, 5287–90.CrossRefGoogle Scholar
  15. 15.
    X. Zhang, N.Q. Vo, P. Bellon, and R.S. Averback: Acta Mater., 2011, vol. 59, pp. 5332–41.CrossRefGoogle Scholar
  16. 16.
    S. Mula, H. Bahmanpour, S. Mala, P.C. Kang, M. Atwater, W. Jian, R.O. Scattergood, and C.C. Koch: Mater. Sci. Eng. A, 2012, vol. 539, pp. 330–36.CrossRefGoogle Scholar
  17. 17.
    N.Q. Vo, S.W. Chee, D. Schwen, X. Zhang, P. Bellon, and R.S. Averback: Scripta Mater., 2010, vol. 63, pp. 929–32.CrossRefGoogle Scholar
  18. 18.
    A.R. Miedema, P.F.d. Chatel, and F.R.d. Boer: Physica B, 1980, vol. 100, pp. 1–28.Google Scholar
  19. 19.
    L. Vitos, A.V. Ruban, H.L. Skriver, J. Kollar: Surf. Sci., 1998, vol. 411, pp. 186–202.CrossRefGoogle Scholar
  20. 20.
    J. Friedel: Adv. Phys., 1954, vol. 3, pp. 446–507.CrossRefGoogle Scholar
  21. 21.
    J.D. Eshelby: Philos. Trans. R. Soc. Lond. A, 1951, vol. 244, pp. 87–112.CrossRefGoogle Scholar
  22. 22.
    C.N. Singman: J. Chem. Educ., 1984, vol. 61, pp. 137–42.CrossRefGoogle Scholar
  23. 23.
    P. Shewmon: Diffusion in Solids, 2 ed., The Minerals, Metals & Materials Society, Warrendale, PA, 1989.Google Scholar
  24. 24.
    H. Okamoto: J. Phase Equilib. Diffus., 2008, vol. 29, p. 290.CrossRefGoogle Scholar
  25. 25.
    A.J. Detor, M.K. Miller, and C.A. Schuh: Philos. Mag., 2006, vol. 86, pp. 4459–75.CrossRefGoogle Scholar
  26. 26.
    A.J. Detor and C.A. Schuh: J. Mater. Res., 2007, vol. 22, pp. 3233–48.CrossRefGoogle Scholar
  27. 27.
    T.J. Rupert, J.R. Trelewicz, and C.A. Schuh: J. Mater. Res., 2012, vol. 27, pp. 1285–94.CrossRefGoogle Scholar
  28. 28.
    T. Ziebell and C.A. Schuh: J. Mater. Res., 2012, vol. 27, pp. 1271–84.CrossRefGoogle Scholar

Copyright information

© The Minerals, Metals & Materials Society and ASM International 2013

Authors and Affiliations

  • Mark A. Atwater
    • 1
    • 2
  • Suhrit Mula
    • 1
    • 3
  • Ronald O. Scattergood
    • 1
  • Carl C. Koch
    • 1
  1. 1.Department of Materials Science and EngineeringNorth Carolina State UniversityRaleighUSA
  2. 2.Department of Applied EngineeringSafety & Technology, Millersville UniversityMillersvilleUSA
  3. 3.Department of Metallurgical and Materials EngineeringIndian Institute of Technology RoorkeeRoorkeeIndia

Personalised recommendations