Skip to main content

Advertisement

Log in

Influence of Temperature and Strain Rate on Tensile Deformation and Fracture Behavior of P92 Ferritic Steel

  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

Tensile tests were performed at strain rates ranging from 3.16 × 10−5 to 1.26 × 10−3 s−1 over a temperature range of 300 K to 923 K (27 °C to 650 °C) to examine the effects of temperature and strain rate on tensile deformation and fracture behavior of P92 ferritic steel. The variations of flow stress/strength values, work hardening rate, and tensile ductility with respect to temperature exhibited distinct three temperature regimes. The fracture mode remained transgranular. The steel exhibited serrated flow, an important manifestation of dynamic strain aging, along with anomalous variations in tensile properties in terms of peaks in flow stress/strength and work hardening rate, negative strain rate sensitivity, and ductility minima at intermediate temperatures. At high temperatures, the rapid decrease in flow stress/strength values and work hardening rate, and increase in ductility with increase in temperature and decrease in strain rate, indicated the dominance of dynamic recovery.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21

Similar content being viewed by others

References

  1. R.L. Klueh: Int. Mater. Rev., 2005, vol. 50, pp. 287-310.

    Article  CAS  Google Scholar 

  2. P.F. Girouxa, F. Dallea, M. Sauzaya, J. Malaplatea, B. Fourniera and A.F. Gourgues-Lorenzon: Mater. Sci. Eng. A, 2010, vol. 527, pp. 3984-93.

    Article  Google Scholar 

  3. F. Masuyama: Int. J. Press. Vessels Piping, 2007, vol. 84, pp. 53-61.

    Article  CAS  Google Scholar 

  4. “Standard Specification for Seamless Ferritic and Austenitic Alloy-Steel Boiler, Superheater, and Heat-Exchanger Tubes”, ASTM Standards A213/A213M–11a, ASTM International, Pennsylvania, 2011.

  5. P.J. Ennis, A. Zielinska-Lipiec, O Wachter and A. Czyrska-Filemonowicz: Acta Mater., 1997, vol. 45, pp. 4901-07.

    Article  CAS  Google Scholar 

  6. K. Maruyama, K. Sawada and J. Koike: ISIJ Int., 2001, vol. 41, pp. 641-83.

    Article  CAS  Google Scholar 

  7. K. Sawada, K. Kubo and F. Abe: Mater. Sci. Eng. A, 2001, vol. 319-321, pp. 784-87.

    Google Scholar 

  8. V. Sklenicka, K. Kucharova, M. Svoboda, L. Kloc, J. Bursık and A. Kroupa: Mater. Charact., 2003, vol. 51, pp. 35-48.

    Article  CAS  Google Scholar 

  9. J. Hald: Int. J. Press. Vessels Piping, 2008, vol. 85, pp. 30-37.

    Article  CAS  Google Scholar 

  10. M. Yoshizawa, M. Igarashi, K. Moriguchi, A. Iseda, H.G. Armaki and K. Maruyama: Mater. Sci. Eng. A, 2009, vol. 510-511, pp. 162-68.

    Google Scholar 

  11. P.J. Ennis, A. Zielinska-Lipiec and A. Czyrska-Filemonowicz: Mater. Sci. Technol., 2000, vol. 16, pp. 1226-32.

    CAS  Google Scholar 

  12. K. Kimura, K. Sawada, H. Kushima and K. Kubo: Int. J. Mater. Res., 2008, vol. 99, pp. 395-401.

    Article  CAS  Google Scholar 

  13. B.K. Choudhary, K.B.S. Rao, S.L. Mannan and B.P. Kashyap: J. Nucl. Mater., 1999, vol. 273, pp. 315-25.

    Article  CAS  Google Scholar 

  14. E. Isaac Samuel, B.K. Choudhary and K.B.S. Rao: Mater. Sci. Technol., 2007, vol. 23, pp. 992-99.

    Article  Google Scholar 

  15. A.K. Roy, P. Kumar and D. Maitra: Mater. Sci. Eng. A, 2009, vol. 499, pp. 379–86.

    Article  Google Scholar 

  16. B.K. Choudhary, V.S. Srinivasan and M.D. Mathew: Mater. High. Temp., 2011, vol. 28, pp. 155-61.

    Article  CAS  Google Scholar 

  17. B.K. Choudhary, K.B.S. Rao, S.L. Mannan and B.P. Kashyap: Mater. Sci. Technol., 1999, vol. 15, pp. 791-97.

    Article  CAS  Google Scholar 

  18. B.K. Choudhary: Mater. Sci. Eng. A, 2013, vol. 564, pp. 303-09.

    Article  CAS  Google Scholar 

  19. E. Pink and A. Grinberg: Mater. Sci. Eng., 1981, vol. 51, pp. 1-8.

    Article  CAS  Google Scholar 

  20. P. Rodriguez: Bull. Mater. Sci., 1984, vol. 6, pp. 653-63.

    Article  Google Scholar 

  21. A.W. Sleeswyk: Acta Metall., 1958, vol. 6, pp. 598-603.

    Article  Google Scholar 

  22. P.G. Mc Cormick: Acta Metall., 1972, vol. 20, pp. 351-54.

    Article  CAS  Google Scholar 

  23. D. Blanc and J.L. Strudel: Strength of Metals and Alloys (ICSMA 7), vol. 1, H.J. McQueen, J.P. Bailon, J.I. Dickson, J.J. Jonas, and M.G. Akben, eds., Pergamon Press, Oxford, 1986, p. 349.

  24. S. Venkadesan, C. Phaniraj, P.V. Sivaprasad and P. Rodriguez: Acta Metall., 1992, vol. 40, pp. 569-80.

    Article  CAS  Google Scholar 

  25. “Design and Construction Rules for Mechanical Components of FBR Nuclear Islands”, French Nuclear Design Code, RCC-MR, Section 1, Subsection Z, Appendix A3.18S.22, AFCEN, La Defense Cedex, Paris, 2007.

  26. R.W. Hayes and W.C. Hayes: Acta Metall., 1984, vol. 32, pp. 259–67.

    Article  CAS  Google Scholar 

  27. K.G. Samuel, S.L. Mannan and P. Rodriguez: Acta Metall., 1988, vol. 36, pp. 2323-27.

    Article  CAS  Google Scholar 

  28. A.W. Sleeswyk: Acta Metall., 1960, vol. 8, pp. 130–32.

    Article  Google Scholar 

  29. A.S. Keh, Y. Nakada, and W.C. Leslie: Dislocation Dynamics, A.R. Rosenfield et al., eds., Mc Graw-Hill, New York, 1968, pp. 381–408.

  30. J.D. Baird: Metall. Rev., 1971, vol. 6, pp. 1–18.

    Article  CAS  Google Scholar 

  31. P.G. Mc Cormick: Acta Metall., 1973, vol. 21, pp. 873–78.

    Article  CAS  Google Scholar 

  32. K. Laha, K.S. Chandravati, K.B.S. Rao and S.L. Mannan: Z. Metallkd., 1994, vol. 12, pp. 839–44.

    Google Scholar 

  33. D.J. Michel, J. Moteff and A.J. Lovell: Acta Metall., 1973, vol. 21, pp. 1269-77.

    Article  CAS  Google Scholar 

  34. B.P. Kashyap, K. McTaggart and K. Tangri: Philos. Mag., 1988, vol. 57, pp. 97-114.

    Article  CAS  Google Scholar 

  35. J. Christopher, B.K. Choudhary, E. Isaac Samuel, V.S. Srinivasan and M.D. Mathew: Mater. Sci. Eng. A, 2011, vol. 528, pp. 6589–95.

    Article  CAS  Google Scholar 

  36. D.P. Rao Palaparti, B.K. Choudhary, E. Isaac Samuel, V.S. Srinivasan and M.D. Mathew: Mater. Sci. Eng. A, 2012, vol. 538, pp. 110-17.

    Article  Google Scholar 

  37. B.K. Choudhary, D.P. Rao Palaparti and E. Isaac Samuel: Metall. Mater. Trans., 2013, vol. 44A, pp. 212-23.

    Article  Google Scholar 

  38. E. Hornbogan: Trans. ASM, 1964, vol. 57, pp. 120-32.

    Google Scholar 

  39. J.W. Edington and R.E. Smallman: Acta Metall., 1964, vol. 12, pp. 1313-28.

    Article  CAS  Google Scholar 

  40. D.J. Dingley and D. McLean: Acta Metall., 1967, vol. 15, pp. 885-901.

    Article  CAS  Google Scholar 

  41. A.M. Garde, A.T. Santhanam and R.E. Reed-Hill: Acta Metall. Mater., 1972, vol. 20, pp. 215-20.

    Article  CAS  Google Scholar 

  42. J.G. Morris: Mater. Sci. Eng., 1974, vol. 13, pp. 101-08.

    Article  CAS  Google Scholar 

  43. S. Okamato, D.K. Matlock and G. Krauss: Scripta Metall., 1991, vol. 25, pp. 39-44.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to B. K. Choudhary.

Additional information

Manuscript submitted March 20, 2013.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Choudhary, B.K., Samuel, E.I., Sainath, G. et al. Influence of Temperature and Strain Rate on Tensile Deformation and Fracture Behavior of P92 Ferritic Steel. Metall Mater Trans A 44, 4979–4992 (2013). https://doi.org/10.1007/s11661-013-1869-6

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-013-1869-6

Keywords

Navigation