Abstract
Tensile tests were performed at strain rates ranging from 3.16 × 10−5 to 1.26 × 10−3 s−1 over a temperature range of 300 K to 923 K (27 °C to 650 °C) to examine the effects of temperature and strain rate on tensile deformation and fracture behavior of P92 ferritic steel. The variations of flow stress/strength values, work hardening rate, and tensile ductility with respect to temperature exhibited distinct three temperature regimes. The fracture mode remained transgranular. The steel exhibited serrated flow, an important manifestation of dynamic strain aging, along with anomalous variations in tensile properties in terms of peaks in flow stress/strength and work hardening rate, negative strain rate sensitivity, and ductility minima at intermediate temperatures. At high temperatures, the rapid decrease in flow stress/strength values and work hardening rate, and increase in ductility with increase in temperature and decrease in strain rate, indicated the dominance of dynamic recovery.
Similar content being viewed by others
References
R.L. Klueh: Int. Mater. Rev., 2005, vol. 50, pp. 287-310.
P.F. Girouxa, F. Dallea, M. Sauzaya, J. Malaplatea, B. Fourniera and A.F. Gourgues-Lorenzon: Mater. Sci. Eng. A, 2010, vol. 527, pp. 3984-93.
F. Masuyama: Int. J. Press. Vessels Piping, 2007, vol. 84, pp. 53-61.
“Standard Specification for Seamless Ferritic and Austenitic Alloy-Steel Boiler, Superheater, and Heat-Exchanger Tubes”, ASTM Standards A213/A213M–11a, ASTM International, Pennsylvania, 2011.
P.J. Ennis, A. Zielinska-Lipiec, O Wachter and A. Czyrska-Filemonowicz: Acta Mater., 1997, vol. 45, pp. 4901-07.
K. Maruyama, K. Sawada and J. Koike: ISIJ Int., 2001, vol. 41, pp. 641-83.
K. Sawada, K. Kubo and F. Abe: Mater. Sci. Eng. A, 2001, vol. 319-321, pp. 784-87.
V. Sklenicka, K. Kucharova, M. Svoboda, L. Kloc, J. Bursık and A. Kroupa: Mater. Charact., 2003, vol. 51, pp. 35-48.
J. Hald: Int. J. Press. Vessels Piping, 2008, vol. 85, pp. 30-37.
M. Yoshizawa, M. Igarashi, K. Moriguchi, A. Iseda, H.G. Armaki and K. Maruyama: Mater. Sci. Eng. A, 2009, vol. 510-511, pp. 162-68.
P.J. Ennis, A. Zielinska-Lipiec and A. Czyrska-Filemonowicz: Mater. Sci. Technol., 2000, vol. 16, pp. 1226-32.
K. Kimura, K. Sawada, H. Kushima and K. Kubo: Int. J. Mater. Res., 2008, vol. 99, pp. 395-401.
B.K. Choudhary, K.B.S. Rao, S.L. Mannan and B.P. Kashyap: J. Nucl. Mater., 1999, vol. 273, pp. 315-25.
E. Isaac Samuel, B.K. Choudhary and K.B.S. Rao: Mater. Sci. Technol., 2007, vol. 23, pp. 992-99.
A.K. Roy, P. Kumar and D. Maitra: Mater. Sci. Eng. A, 2009, vol. 499, pp. 379–86.
B.K. Choudhary, V.S. Srinivasan and M.D. Mathew: Mater. High. Temp., 2011, vol. 28, pp. 155-61.
B.K. Choudhary, K.B.S. Rao, S.L. Mannan and B.P. Kashyap: Mater. Sci. Technol., 1999, vol. 15, pp. 791-97.
B.K. Choudhary: Mater. Sci. Eng. A, 2013, vol. 564, pp. 303-09.
E. Pink and A. Grinberg: Mater. Sci. Eng., 1981, vol. 51, pp. 1-8.
P. Rodriguez: Bull. Mater. Sci., 1984, vol. 6, pp. 653-63.
A.W. Sleeswyk: Acta Metall., 1958, vol. 6, pp. 598-603.
P.G. Mc Cormick: Acta Metall., 1972, vol. 20, pp. 351-54.
D. Blanc and J.L. Strudel: Strength of Metals and Alloys (ICSMA 7), vol. 1, H.J. McQueen, J.P. Bailon, J.I. Dickson, J.J. Jonas, and M.G. Akben, eds., Pergamon Press, Oxford, 1986, p. 349.
S. Venkadesan, C. Phaniraj, P.V. Sivaprasad and P. Rodriguez: Acta Metall., 1992, vol. 40, pp. 569-80.
“Design and Construction Rules for Mechanical Components of FBR Nuclear Islands”, French Nuclear Design Code, RCC-MR, Section 1, Subsection Z, Appendix A3.18S.22, AFCEN, La Defense Cedex, Paris, 2007.
R.W. Hayes and W.C. Hayes: Acta Metall., 1984, vol. 32, pp. 259–67.
K.G. Samuel, S.L. Mannan and P. Rodriguez: Acta Metall., 1988, vol. 36, pp. 2323-27.
A.W. Sleeswyk: Acta Metall., 1960, vol. 8, pp. 130–32.
A.S. Keh, Y. Nakada, and W.C. Leslie: Dislocation Dynamics, A.R. Rosenfield et al., eds., Mc Graw-Hill, New York, 1968, pp. 381–408.
J.D. Baird: Metall. Rev., 1971, vol. 6, pp. 1–18.
P.G. Mc Cormick: Acta Metall., 1973, vol. 21, pp. 873–78.
K. Laha, K.S. Chandravati, K.B.S. Rao and S.L. Mannan: Z. Metallkd., 1994, vol. 12, pp. 839–44.
D.J. Michel, J. Moteff and A.J. Lovell: Acta Metall., 1973, vol. 21, pp. 1269-77.
B.P. Kashyap, K. McTaggart and K. Tangri: Philos. Mag., 1988, vol. 57, pp. 97-114.
J. Christopher, B.K. Choudhary, E. Isaac Samuel, V.S. Srinivasan and M.D. Mathew: Mater. Sci. Eng. A, 2011, vol. 528, pp. 6589–95.
D.P. Rao Palaparti, B.K. Choudhary, E. Isaac Samuel, V.S. Srinivasan and M.D. Mathew: Mater. Sci. Eng. A, 2012, vol. 538, pp. 110-17.
B.K. Choudhary, D.P. Rao Palaparti and E. Isaac Samuel: Metall. Mater. Trans., 2013, vol. 44A, pp. 212-23.
E. Hornbogan: Trans. ASM, 1964, vol. 57, pp. 120-32.
J.W. Edington and R.E. Smallman: Acta Metall., 1964, vol. 12, pp. 1313-28.
D.J. Dingley and D. McLean: Acta Metall., 1967, vol. 15, pp. 885-901.
A.M. Garde, A.T. Santhanam and R.E. Reed-Hill: Acta Metall. Mater., 1972, vol. 20, pp. 215-20.
J.G. Morris: Mater. Sci. Eng., 1974, vol. 13, pp. 101-08.
S. Okamato, D.K. Matlock and G. Krauss: Scripta Metall., 1991, vol. 25, pp. 39-44.
Author information
Authors and Affiliations
Corresponding author
Additional information
Manuscript submitted March 20, 2013.
Rights and permissions
About this article
Cite this article
Choudhary, B.K., Samuel, E.I., Sainath, G. et al. Influence of Temperature and Strain Rate on Tensile Deformation and Fracture Behavior of P92 Ferritic Steel. Metall Mater Trans A 44, 4979–4992 (2013). https://doi.org/10.1007/s11661-013-1869-6
Published:
Issue Date:
DOI: https://doi.org/10.1007/s11661-013-1869-6