Evaluation of Residual Stress Development at the Interface of Plasma Electrolytically Oxidized and Cold-Worked Aluminum

Abstract

Fatigue failure in hard oxide-coated aluminum is usually driven by rapid short crack propagation from the interface through the substrate; mitigation of this is possible by introducing interfacial compressive stresses. Combining cold work with hard oxide coating can improve their performance under conditions of simultaneous wear, corrosion, and fatigue. Three-dimensional strain fields in an aluminum alloy with combined cold work and PEO coating have been measured and mechanisms for stress redistribution presented. These comprise material consumption, expansive growth of oxide layers, and local annealing.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3

References

  1. 1.

    A. L. Yerokhin, X. Nie, A. Leyland, A. Matthews, and S. J. Dowey, Surface and Coatings Technology 122, 73–93 (1999).

    Article  CAS  Google Scholar 

  2. 2.

    P. A. Dearnley, J. Gummersbach, H. Weiss, A. A. Ogwu, and T. J. Davies, Wear 225, 127–34 (1999).

    Article  Google Scholar 

  3. 3.

    N. Godja, N. Kiss, C. Locker, A. Schindel, A. Gavrilovic, J. Wosik, R. Mann, J. Wendrinsky, A. Merstallinger, and G. E. Nauer, Tribology International 43, 1253–61 (2010).

    Article  CAS  Google Scholar 

  4. 4.

    L. R. Krishna, A. S. Purnima, and G. Sundararajan, Wear 261, 1095–1101 (2006).

    Article  CAS  Google Scholar 

  5. 5.

    X. Nie, E. I. Meletis, J. C. Jiang, A. Leyland, A. L. Yerokhin, and A. Matthews, Surface & Coatings Technology 149, 245–51 (2002).

    Article  CAS  Google Scholar 

  6. 6.

    C. Pritchard and P.R. Robinson (1969) Wear 13:361–68.

    Article  Google Scholar 

  7. 7.

    G. Sabatini, L. Ceschini, C. Martini, J. A. Williams, and I. M. Hutchings, Materials & Design 31, 816–28 (2010).

    Article  CAS  Google Scholar 

  8. 8.

    A. A. Voevodin, A. L. Yerokhin, V. V. Lyubimov, M. S. Donley, and J. S. Zabinski, Surface & Coatings Technology 86–87, 516–21 (1996).

    Article  Google Scholar 

  9. 9.

    T. B. Wei, F. Y. Yan, and J. Tian, J. Alloy. Compd. 389, 169–76 (2005).

    Article  CAS  Google Scholar 

  10. 10.

    F. Zhou, Y. Wang, H. Y. Ding, M. L. Wang, M. Yu, and Z. D. Dai, Surf. Coat. Technol. 202, 3808–14 (2008).

    Article  CAS  Google Scholar 

  11. 11.

    R. C. Barik, J. A. Wharton, R. J. K. Wood, K. R. Stokes, and R. L. Jones, Surf. Coat. Technol. 199, 158–67 (2005).

    Article  CAS  Google Scholar 

  12. 12.

    L. Wen, Y. M. Wang, Y. Zhou, J. H. Ouyang, L. X. Guo, and D. C. Jia, Corros. Sci. 52, 2687–96 (2010).

    Article  CAS  Google Scholar 

  13. 13.

    J. A. Curran and T. W. Clyne, Surf. Coat. Technol. 199, 177–83 (2005).

    Article  CAS  Google Scholar 

  14. 14.

    J. A. Curran, H. Kalkanci, Y. Magurova, and T. W. Clyne, Surf. Coat. Technol. 201, 8683–87 (2007).

    Article  CAS  Google Scholar 

  15. 15.

    D. J. Shen, Y. L. Wang, P. Nash, and G. Z. Xing, J. Mater. Process. Technol. 205, 477–81 (2008).

    Article  CAS  Google Scholar 

  16. 16.

    D.T. Asquith, Y.H. Tai, C.X. Wong, J.R. Yates, A. Matthews, and A.L. Yerokhin: 17th European Conference on Fracture, 2008.

  17. 17.

    Y. J. Guan, Y. Xia, and F. T. Xu, Surf Coat Technol 202, 4204–09 (2008).

    Article  CAS  Google Scholar 

  18. 18.

    B. Rajasekaran, S. G. S. Raman, L. R. Krishna, S. V. Joshi, and G. Sundararajan, Surf Coat Technol 202, 1462–69 (2008).

    Article  CAS  Google Scholar 

  19. 19.

    F. S. Silva, Eng Fail Anal 13, 480–92 (2006).

    Article  CAS  Google Scholar 

  20. 20.

    N.P. Wasekar, N. Ravi, P.S. Babu, L.R. Krishna, and G. Sundararajan (2010) Metall. Mater. Trans. A 41A:255–65.

    Article  CAS  Google Scholar 

  21. 21.

    W. B. Xue, C. Wang, Z. W. Deng, R. Y. Chen, Y. L. Li, and T. H. Zhang, J. Phys. Condens. Matter 14, 10947–52 (2002).

    Article  CAS  Google Scholar 

  22. 22.

    E. Cirik and K. Genel, Surf. Coat. Technol. 202, 5190–5201 (2008).

    Article  CAS  Google Scholar 

  23. 23.

    Shahzad M, Chaussumiera M, Chieragattia R, Mabrua C, and Aria F R (2010) J. Mater. Process. Technol. 210:1821–26.

    Article  CAS  Google Scholar 

  24. 24.

    D. W. Hammond and S. A. Meguid: Eng. Fract. Mech. 37:373–87 (1990).

    Article  Google Scholar 

  25. 25.

    D. T. Asquith, A. L. Yerokhin, J. R. Yates, and A. Matthews, Thin Solid Films 515, 1187–91 (2006).

    Article  CAS  Google Scholar 

  26. 26.

    B. Lonyuk, I. Apachitei, and J. Duszczyk, Surface & Coatings Technology 201, 8688–94 (2007).

    Article  CAS  Google Scholar 

  27. 27.

    D. T. Asquith, A. L. Yerokhin, J. R. Yates, and A. Matthews, Thin Solid Films 516, 417–21 (2007).

    Article  CAS  Google Scholar 

  28. 28.

    R. H. U. Khan, A. Yerokhin, X. Li, H. Dong, and A. Matthews, Surf. Coat. Technol. 205, 1679–88 (2010).

    Article  CAS  Google Scholar 

  29. 29.

    R. H. U. Khan, A. L. Yerokhin, T. Pilkington, A. Leyland, and A. Matthews, Surface and Coatings Technology 200, 1580–86 (2005).

    Article  CAS  Google Scholar 

  30. 30.

    C. Kirchlechner, K.J. Martinschitz, R. Daniel, C. Mitterer, J. Donges, A. Rothkirch, M. Klaus, C. Genzel, and J. Keckes (2010) Scripta Mater. 62:774–77.

    Article  CAS  Google Scholar 

  31. 31.

    D.T. Asquith: Residual Stress and Fatigue in Cold-Worked, Hard-Coated 2024-T351 Aluminium Alloy, University of Sheffield, 2008.

  32. 32.

    A. L. Yerokhin, A. Shatrov, V. Samsonov, P. Shashkov, A. Pilkington, A. Leyland, and A. Matthews, Surface and Coatings Technology 199, 150–57 (2005).

    Article  CAS  Google Scholar 

  33. 33.

    D. J. Hughes, M. N. James, D. G. Hattingh, and P. J. Webster, Journal of Neutron Research 11, 289–93 (2003).

    Article  Google Scholar 

  34. 34.

    K. T. Habazaki, Philos. Mag. A 80, 1027–42 (2000).

    Article  CAS  Google Scholar 

  35. 35.

    L. O. Snizhko, A. L. Yerokhin, A. Pilkington, N. L. Gurevina, D. O. Misnyankin, A. Leyland, and A. Matthews, Electrochim. Acta 49, 2085–95 (2004).

    Article  CAS  Google Scholar 

  36. 36.

    N. B. Pilling and R. E. Bedworth, J. Inst. Met. 29, 529–82 (1923).

    Google Scholar 

  37. 37.

    ASM Metals Handbook, ASM International, Materials Park, 1997.

  38. 38.

    M. N. James, D. J. Hughes, Z. Chen, H. Lombard, D. G. Hattingh, D. Asquith, J. R. Yates, and P. J. Webster, Eng. Fail. Anal. 14, 384–95 (2007).

    Article  CAS  Google Scholar 

Download references

David Asquith and Aleksey Yerokhin acknowledge ESRF funding of experiment MA-243 (local contact Dr Alex Evans) and EPSRC grant number EP/H051317/1, respectively.

Author information

Affiliations

Authors

Corresponding author

Correspondence to David Asquith.

Additional information

Manuscript submitted April 16, 2013.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Asquith, D., Yerokhin, A., James, N. et al. Evaluation of Residual Stress Development at the Interface of Plasma Electrolytically Oxidized and Cold-Worked Aluminum. Metall Mater Trans A 44, 4461–4465 (2013). https://doi.org/10.1007/s11661-013-1854-0

Download citation

Keywords

  • Residual Stress
  • Compressive Residual Stress
  • Shot Peening
  • Plasma Electrolytic Oxidation
  • Plasma Electrolytic Oxidation Coating