Skip to main content

A Novel In Situ Method for Producing a Dispersion of a Ceramic Phase into Copper That Remains Stable at 0.9T M


We apply an in situ approach, whereby a polymer is incorporated into copper and evolves within the metal into the ceramic phase, to create a dispersion of hard particles in a metal. All constituents for the ceramic phase are contained within the organic polymer. The temperature for this polymer to ceramic conversion lies in the 1073 K to 1273 K (800 °C to 1000 °C) range. The process produces a nanoscale dispersion of the ceramic, which leads to high microhardness that remains unaltered at temperatures up to 1223 K (950 °C) (0.9T M). Apparently, the introduction of the ceramic phase leads to the retention of copper crystallite size of a few hundred nm, despite exposure to heat treatments at these very high temperatures. We call these materials polymer-derived metal-matrix composites.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13


  1. D. Hull, Introduction to Dislocations, 5th Edition. Butterworth Heinemann Elsevier, NY,2011.

    Google Scholar 

  2. J. W. Christian, The Theory of Transformation in Metals and Alloys, Pergamon Press, 3rd Edition, 2002.

    Google Scholar 

  3. J. Groza, J. Mater. Eng. and Performance, Vol. 1, p. 113 (1992).

    Article  CAS  Google Scholar 

  4. Sudarshan, M. K. Surappa, D. J. Ahn, and R. Raj, Metall. Mater. Trans. A, Vol. 39A, 2008, 3291–97.

    Article  CAS  Google Scholar 

  5. E. Kroke, Y-L. Li, C. Koetschny, E. Lecomt, C. Fasel and R. Riedel, Mater. Sci. Eng. Reports, Vol. 26, 97-199 (2000).

    Article  Google Scholar 

  6. L. Pederiva, G. D. Sorarù, J. Latournerie and R. Raj, J. Amer. Ceram. Soc., Vol 85[9], 2181-2187 (2002).

    Article  Google Scholar 

  7. A. Saha, D. L. Williamson, and R. Raj, J. Amer. Ceram. Soc., Vol. 89[7], 2188-2195 (2006).

    CAS  Google Scholar 

  8. J. Bill, J. Schumacher, K. Muller, J. Seitz, J. Durr, H. P. Lamparter, J. Golczewski, J. Q. Peng, H. J. Seifert, and F. Aldinger, Zeitschrift fur Metallkunde, Vol. 94, 335-351 (2000).

    Google Scholar 

  9. L. An, R. Riedel, C. Konetschny, H.-J. Kleebe and R. Raj, J. Amer. Ceram. Soc., 81 [5], 1349-1352 (1998).

    Article  Google Scholar 

  10. S. R. Shah and R. Raj, Acta Materialia,, 50[16], 1359-6454 (2002).

    Article  Google Scholar 

  11. Y.-L. Li, E. Kroke, R. Riedel, C. Fasel, C. Gervais, and F. Babonneau, Appl. Organometall. Chem., 15, 2001, pp. 820–832.

    Article  CAS  Google Scholar 

  12. H.-Y. Ryu and R. Raj, J. Amer. Ceram. Soc., 90[1], 295-297 (2007).

    Article  CAS  Google Scholar 

Download references


This research was supported in part by the University of Trento, Italy, and in part by the Division of Materials Research at the National Science Foundation of the United States (DMR1105347).

Author information

Authors and Affiliations


Corresponding author

Correspondence to Rishi Raj.

Additional information

Manuscript submitted October 17, 2011.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Castellan, E., Ischia, G., Molinari, A. et al. A Novel In Situ Method for Producing a Dispersion of a Ceramic Phase into Copper That Remains Stable at 0.9T M . Metall Mater Trans A 44, 4734–4742 (2013).

Download citation

  • Published:

  • Issue Date:

  • DOI:


  • Spark Plasma Sinter
  • Milling Process
  • Milling Time
  • Copper Powder
  • Milled Powder