Skip to main content
Log in

Correlation of Microstructure, Chip-Forming Properties, and Dynamic Torsional Properties in Free-Machining Steels

  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

Four free-machining steels were fabricated by varying volume fractions of MnS and soft metal additives of Pb and Bi, and their microstructures, tensile properties, chip-forming properties, and dynamic torsional properties were analyzed. Machining and dynamic torsional tests were conducted on the four steels to investigate chip-forming and dynamic torsional properties, respectively. In the Pb-S- and Bi-S-based steels, the chip thickness and ridge area of the 1st chip obtained from the machining test were smaller than in the S-based steels and were not changed much after repeated machining processes. These chip-forming properties were closely related with dynamic torsional properties. Dynamic maximum shear strains of the Pb-S- and Bi-S-based steels were higher than those of the S-based steels, while dynamic maximum shear stresses were lower, thereby leading to the relatively homogeneous dynamic shear deformation and to the better chip-forming properties and machinability.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. K. Kishi and H. Eda: Wear, 1976, vol. 38, pp. 29–42.

    Article  CAS  Google Scholar 

  2. S. K. Cho: J. Kor. Inst. Met. Mater., 1996, vol. 34, pp. 822–29.

    Google Scholar 

  3. H. Yaguchi: Mater. Sci. Technol., 1989, vol. 5, pp. 255–67.

    Article  CAS  Google Scholar 

  4. D. N. Lee, H. -S. Choi, and H. N. Han: Met. Mater. Int., 2011, vol. 17, pp. 879–83.

    Article  CAS  Google Scholar 

  5. L. Caballero, J. M. Atienza, and M. Elices: Met. Mater. Int., 2011, vol. 17, pp. 899–910.

    Article  CAS  Google Scholar 

  6. S. Dinda and W. R. Warke: Mater. Sci. Eng., 1976, vol. A24, pp. 199–208.

    Google Scholar 

  7. W. Roberts, B. Lehtinen, and K. E. Easterling: Acta Metall., 1976, vol. 24, pp. 745–58.

    Article  CAS  Google Scholar 

  8. T. J. Baker, F. P. L. Kavishe, and J. Wilson: Mater. Sci. Technol., 1986, vol. 2, pp. 576–82.

    Article  CAS  Google Scholar 

  9. S. Vervynckt, P. Thibaux, and K. Verbeken: Met. Mater. Int., 2012, vol. 18, pp. 37–46.

    Article  CAS  Google Scholar 

  10. K. -T. Park, S. W. Hwang, J. H. Ji, and C. H. Lee: Met. Mater. Int., 2011, vol. 17, pp. 349–56.

    Article  CAS  Google Scholar 

  11. H. Yaguchi: Mater. Sci. Eng., 1986, vol. A80, pp. L27–30.

    Google Scholar 

  12. H. Yaguchi: J. Appl. Metalwork., 1986, vol. 4, pp. 214–20.

    Article  CAS  Google Scholar 

  13. T. Akasawa, H. Sakurai, M. Nakamura, T. Tanaka, and K. Takano: J. Mater. Process Technol., 2003, vol. 143, pp. 66–71.

    Article  Google Scholar 

  14. K. Ohgo: Wear, 1977, vol. 45, pp. 365–74.

    Article  CAS  Google Scholar 

  15. R. Milovic and J. Wallbank: J. Applied Metalworking, 1983, vol. 2, pp. 249–57.

    Article  CAS  Google Scholar 

  16. M. Baker, J. Rosler, and C. Siemers: Comput. Struct., 2002, vol. 80, pp. 495–13.

    Article  Google Scholar 

  17. B. Da Silva: J. Mater. Process Technol., 1999, vol. 88, pp. 195–202.

    Article  Google Scholar 

  18. P. Fallböhmer, C. A. Rodríguez, T. Özel, and T. Altan: J. Mater. Process Technol., 2000, vol. 98, pp. 104–16.

    Article  Google Scholar 

  19. T. Mabrouki and F. J. Rigal: J. Mater. Process Technol., 2006, vol. 176, pp. 214–21.

    Article  CAS  Google Scholar 

  20. R. Komanduri: Wear, 1982, vol. 76, pp. 15–34.

    Article  Google Scholar 

  21. H. K. Tönshoff, C. Arendt, and R. B. Amor: CIRP Ann. Manuf. Technol., 2000, vol. 49, pp. 547–66.

    Article  Google Scholar 

  22. T. B. Massalski: Metals Handbook, 9th ed., Ohio, ASM, Metals Park, 1990, p. 707.

  23. K. Cho, Y. C. Chi, and J. Duffy: Metall. Trans. A, 1990, vol. 21A, pp. 1161–75.

    CAS  Google Scholar 

  24. J. Duffy and Y. C. Chi: Mater. Sci. Eng., 1992, vol. A157, pp. 195–210.

    CAS  Google Scholar 

  25. A. Marchand and J. Duffy: J. Mech. Phys. Solids, 1988, vol. 36, pp. 251–83.

    Article  Google Scholar 

  26. A. Gilat: Torsional Kolsky Bar Testing, Mechanical Testing, ASM Handbook, ASM Inernship, Materials Park, 2000, vol. 8, pp. 505–15.

  27. K. A. Hartley, J. Duffy, and R. H. Hawley: J. Mech. Phys. Solids, 1987, vol. 35, pp. 283–301.

    Article  Google Scholar 

  28. R. E. Kroon, S. Cronjé, W. D. Roos, and T. J. Cloete: Met. Mater. Int., 2011, vol. 17, pp. 671–77.

    Article  CAS  Google Scholar 

  29. G. S. Mann and L. H. Van Vlack: Metall. Trans., 1972, vol. 3, pp. 2005–2006.

    Article  CAS  Google Scholar 

  30. H. C. Chao, L. H. Van Vlack, F. Oberin, and L. Thomassen: Trans. ASM, 1964, vol. 57, pp. 885–91.

    CAS  Google Scholar 

  31. S. Ramalingam, K. Basu, and S. Malkin: Mater. Sci. Eng., 1977, vol. A29, pp. 117–21.

    Google Scholar 

Download references

Acknowledgments

This work was supported by POSCO under contract No. 20108008.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sunghak Lee.

Additional information

Manuscript submitted April 18, 2012.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kim, Y., Kim, H., Kang, M. et al. Correlation of Microstructure, Chip-Forming Properties, and Dynamic Torsional Properties in Free-Machining Steels. Metall Mater Trans A 44, 4613–4625 (2013). https://doi.org/10.1007/s11661-013-1828-2

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-013-1828-2

Keywords

Navigation