Metallurgical and Materials Transactions A

, Volume 44, Issue 10, pp 4505–4512 | Cite as

Fabrication and Characterization of Naturally Selected Epitaxial Fe-{111} Y2Ti2O7 Mesoscopic Interfaces: Some Potential Implications to Nano-Oxide Dispersion-Strengthened Steels

  • Tiberiu StanEmail author
  • Yuan Wu
  • George R. Odette
  • Kurt E. Sickafus
  • Hannah A. Dabkowska
  • Bruce D. Gaulin
Symposium: Solid-State Interfaces II: Toward an Atomistic-Scale Understanding of Structure, Properties, and Behavior through Theory and Experiment


The smallest features of ≈2 to 3 nm in nanostructured ferritic alloys (NFA), a variant of oxide dispersion-strengthened steels, include the Y2Ti2O7 complex oxide cubic pyrochlore phase. The interface between the bcc Fe-Cr ferrite matrix and the fcc nanometer-scale Y2Ti2O7 plays a critical role in the stability, strength, and damage tolerance of NFA. To complement other characterization studies of the actual nanofeatures (NF) themselves, mesoscopic interfaces were created by electron beam deposition of a thin Fe layer on a 5 deg miscut {111} Y2Ti2O7 bulk single crystal surface. While the mesoscopic interfaces may differ from those of the embedded NF, the former facilitate characterization of controlled interfaces, such as interactions with point defects and helium. The Fe-Y2Ti2O7 interfaces were studied using scanning electron microscopy, including electron backscatter diffraction, atomic force microscopy, X-ray diffraction, and transmission electron microscopy (TEM). The polycrystalline Fe layer has two general orientation relationships (OR) that are close to (a) the Nishiyama–Wasserman (NW) OR \( \left\{ {110} \right\}_{\text{Fe}} ||\left\{ {111} \right\}_{{{\text{Y}}_{2} {\text{Ti}}_{2} {\text{O}}_{7} }} \) and \( \left\langle {100} \right\rangle_{\text{Fe}} ||\left\langle {110} \right\rangle_{{{\text{Y}}_{2} {\text{Ti}}_{2} {\text{O}}_{7} }} \) and (b) \( \left\{ {100} \right\}_{\text{Fe}} ||\left\{ {111} \right\}_{{{\text{Y}}_{2} {\text{Ti}}_{2} {\text{O}}_{7} }} \) and \( \left\langle {100} \right\rangle_{\text{Fe}} ||\left\langle {110} \right\rangle_{{{\text{Y}}_{2} {\text{Ti}}_{2} {\text{O}}_{7} }} \). High-resolution TEM shows that the NW interface is near-atomically flat, while the {100}Fe grains are an artifact associated with a thin oxide layer. However, the fact that there is still a Fe-Y2Ti2O7 OR is significant. No OR is observed in the presence of a thicker oxide layer.


HRTEM Orientation Relationship Transition Layer Electron Beam Deposition EBSD Scan 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



The authors thank E. Haney, G. Seward, M. Cornish, D. Stave, M. Zepeda, Y. Li, and D. Klingensmith (UCSB) for their help at various stages during the data acquisition and analysis. The current study was supported by the U.S. Department of Energy, Office of Fusion Energy Sciences, under grant DE-FG03-94ER54275. The characterization was done at the CNSI Microstructure and Microanalysis Facility supported by the UCSB NSF MSEC.


  1. 1.
    G.R. Odette, M.J. Alinger, and B.D. Wirth: Annu. Rev. Mater. Res., 2008, Vol. 38, pp. 471–503.CrossRefGoogle Scholar
  2. 2.
    Y. Dai, G.R. Odette, and T. Yamamoto: Compr. Nucl. Mater., 2012, Vol. 1(6), pp. 141–193.CrossRefGoogle Scholar
  3. 3.
    G.R. Odette, and D.T. Hoelzer: JOM, 2010, Vol. 62, pp. 84–92.CrossRefGoogle Scholar
  4. 4.
    M.J. Demkowicz, R.G. Hoagland, and J. P. Hirth: Phys. Rev. Lett., 2008, Vol. 100, pp. 136102.CrossRefGoogle Scholar
  5. 5.
    H. Sakasegawa, L. Chaffron, F. Legendre, M. Brocq, L. Boulanger, S. Poissonnet, Y. de Carlan, J. Bechade, T. Cozzika, and J. Malaplate: J. Nucl. Mater., 2009, Vol. 386–388, pp. 511–14.CrossRefGoogle Scholar
  6. 6.
    S. Yamashita, S. Ohtsuka, N. Akasaka, S. Ukai, and S. Ohnuki: Philos. Mag. Lett., 2004, Vol. 84, pp. 525–29.CrossRefGoogle Scholar
  7. 7.
    S. Yamashita, N. Akasaka, and S. Ohnuki: J. Nucl. Mater., 2004, Vol. 329–333, pp. 377–81.CrossRefGoogle Scholar
  8. 8.
    M. Klimiankou, R. Lindau, and A. Möslang: J. Nucl. Mater., 2004, Vol. 329–333, pp. 347–51.CrossRefGoogle Scholar
  9. 9.
    M. Klimiankou, R. Lindau, and A. Möslang: Micron, 2005, Vol. 36, pp. 1–8.CrossRefGoogle Scholar
  10. 10.
    T. Okuda, and M. Fujiwara: J. Mater. Sci. Lett., 1995, Vol. 14, pp. 1600–03.CrossRefGoogle Scholar
  11. 11.
    Y. Wu, E.M. Haney, N.J. Cunningham, and G.R. Odette: Acta Mater., 2012, Vol. 60, pp. 3456–68.CrossRefGoogle Scholar
  12. 12.
    J. Ciston, Y. Wu, G.R. Odette, and P. Hosemann: Microsc. Microalan., 2012, vol. 18, pp. 760–61.CrossRefGoogle Scholar
  13. 13.
    S.S. Vagarali, and G.R. Odette: J. Nucl. Mater., 1981, vol. 104, pp. 1239–43.CrossRefGoogle Scholar
  14. 14.
    H. Trinkaus: J. Nucl. Mater., 1983, Vol. 118, pp. 39–49.CrossRefGoogle Scholar
  15. 15.
    H. Ullmaier: Nucl. Fusion, 1984, Vol. 24, pp. 1039–83.CrossRefGoogle Scholar
  16. 16.
    G.R. Odette: J. Nucl. Mater., 1984, Vol. 122, pp. 435–41.CrossRefGoogle Scholar
  17. 17.
    G.R. Odette, P. Miao, D.J. Edwards, T. Yamamoto, R.J. Kurtz, and H. Tanigawa: J. Nucl. Mater., 2011, Vol 417, pp. 1001–04.CrossRefGoogle Scholar
  18. 18.
    S.Y. Zhong, J. Ribis, V. Klosek, Y. de Carlan, N. Lochet, V. Ji, and M.H. Mathon: J. Nucl. Mater., 2012, Vol. 428, pp. 154–59.CrossRefGoogle Scholar
  19. 19.
    M. J. Alinger, G. R. Odette, and D. T. Hoelzer: J. Nucl. Mater., Vol. 329–333, 2004, pp. 382–86.CrossRefGoogle Scholar
  20. 20.
    J.S. Gardner, B.D. Gaulin, and D.M. Paul: J. Cryst. Growth, 1998, Vol. 191, pp. 740–45.CrossRefGoogle Scholar
  21. 21.
    H.A. Dabkowska and A.B. Dabkowski: Spring. Handb. Cryst. Growth., 2010, pp. 367–92.Google Scholar
  22. 22.
    M.B. Johnson, D.D. James, A. Bourque, H.A. Dabkowska, and B.D. Gaulin: J. Solid State Chem., 2009, Vol. 182, pp. 725–29.CrossRefGoogle Scholar
  23. 23.
    N.I. Kato: J. Electron Microsc., 2004, Vol. 53, pp. 451–58.CrossRefGoogle Scholar
  24. 24.
    A. Hashibon, A.Y. Lozovoi, Y. Mishin, C. Elsasser, and P. Gumbsch: Phys. Rev. B, 2008, Vol. 77, pp. 094131.CrossRefGoogle Scholar
  25. 25.
    E.A. Marquis: Appl. Phys. Lett., 2008, Vol. 93, pp. 181904.CrossRefGoogle Scholar
  26. 26.
    C.A. Williams, E.A. Marquis, A. Cerezo, and G.D. Smith: J. Nucl. Mater., 2010, Vol. 400, pp. 37–45.CrossRefGoogle Scholar

Copyright information

© The Minerals, Metals & Materials Society and ASM International 2013

Authors and Affiliations

  • Tiberiu Stan
    • 1
    Email author
  • Yuan Wu
    • 1
  • George R. Odette
    • 1
  • Kurt E. Sickafus
    • 2
  • Hannah A. Dabkowska
    • 3
  • Bruce D. Gaulin
    • 4
  1. 1.Department of Materials Science and EngineeringUniversity of California Santa BarbaraSanta BarbaraUSA
  2. 2.Department of Materials Science and EngineeringUniversity of TennesseeKnoxvilleUSA
  3. 3.Brockhouse Institute of Materials ResearchMcMaster UniversityHamiltonCanada
  4. 4.Department of Physics and AstronomyMcMaster UniversityHamiltonCanada

Personalised recommendations