Skip to main content
Log in

On the Optimization of Compressibility and Hardenability of Sinter-Hardenable PM Steels

  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

Sinter-hardenable steel powders eliminate the extra steps normally required for heat treating since they allow for direct quenching of components at the end of the sintering cycle with a forced convection cooling unit. The current article presents the results of the effect of the alloying method on the optimization of compressibility and sinter-hardenability of sinter-hardenable PM steels. Water-atomized steel powders were produced. Two successive designs of experiments were used to optimize the chemical composition with prealloyed (nickel, chromium, molybdenum, and manganese) and admixed elements (nickel, chromium, manganese, and copper). Static mechanical properties were also characterized. Results show that among all of the combinations of chemical elements and within the range of concentrations studied, the optimum sinter-hardenable powder had the following prealloyed chemistry: 1.5 wt pct Ni, 1 to 1.25 wt pct Mo, and 0.40 to 0.55 wt pct Cr.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  1. M. Lutheran, Int. J. Powder Metall. 2010, 46, p. 25–28.

    CAS  Google Scholar 

  2. G.F. Bocchini, B. Rivolta, G. Silva, E. Poggio, M.R. Pinasco, M.G. Ienco, Powder Metall., 2004, vol. 47, pp. 343-51.

    Article  CAS  Google Scholar 

  3. N. Giguère, C. Blais, Mat Sci Forum Vols. 706 (2012), pp. 2107-2111.

    Article  Google Scholar 

  4. G.E.P. Box, W.G. Hunter, J.S. Hunter, Statistics for Experimenters, John Wiley & Sons, NY, 1978, pp. 307-344.

    Google Scholar 

  5. MPIF: Metal Powder Industries Federation Standard 3. Metal Powder Industries Federation: Princeton, NJ, 1998.

    Google Scholar 

  6. MPIF: Metal Powder Industries Federation Standard 4. Metal Powder Industries Federation: Princeton, NJ, 1998.

    Google Scholar 

  7. MPIF: Metal Powder Industries Federation Standard 45. Metal Powder Industries Federation: Princeton, NJ, 1998.

    Google Scholar 

  8. MPIF: Metal Powder Industries Federation Standard 15. Metal Powder Industries Federation: Princeton, NJ, 1998.

    Google Scholar 

  9. MPIF: Metal Powder Industries Federation Standard 10. Metal Powder Industries Federation: Princeton, NJ, 1998.

    Google Scholar 

  10. MPIF: Metal Powder Industries Federation Standard 41. Metal Powder Industries Federation: Princeton, NJ, 1998.

    Google Scholar 

  11. MPIF: Metal Powder Industries Federation Standard 42. Metal Powder Industries Federation: Princeton, NJ, 1998.

    Google Scholar 

  12. MPIF: Metal Powder Industries Federation Standard 44. Metal Powder Industries Federation: Princeton, NJ, 1998.

    Google Scholar 

  13. MPIF: Metal Powder Industries Federation Standard 43. Metal Powder Industries Federation: Princeton, NJ, 1998.

    Google Scholar 

  14. D.R. Gaskell, Introduction to Metallurgical Thermodynamics 2nd Ed., Hemisphere Publishing Corp., New York, 1981, p.247.

    Google Scholar 

  15. R.M. German, Powder Metallurgy & Particulate Materials Processing, Metal Powder Industries Federation, Princeton, 1994, pp. 194-96.

    Google Scholar 

  16. E. Klar, ASM Handbook Volume 7 : Powder Metallurgy,, 6th Edition, American Society for Metals, Metals Park, OH, 1997, pp.311-20.

    Google Scholar 

  17. G. Krauss, Steels: Processing, Structure and Performance, ASM International, Materials Park, Ohio, 2005, pp. 297-325.

    Google Scholar 

  18. B. Tougas, C. Blais, F. Chagnon, S. Pelletier, Mater. Trans. A, 2013, 44, pp. 754–765.

    Article  Google Scholar 

  19. B. Lindsley: Euro PM2007, Toulouse, France, 2007, pp. 6.

  20. Technical Data, 2004. http://www.hoeganaes.com/Product%20Datasheets/DatasheetsJan2009/Ancorsteel737SH.pdf.

  21. T. Haberberger, F.G. Hanejko, M.L. Marucci, and P. King: Properties and Applications of High Density Sinter-Hardening Materials, 2006. http://www.hoeganaes.com/TechPapersv2/124.pdf.

Download references

Acknowledgments

This research was funded by the Auto21-Network of Centers of Excellence, Canada.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nicolas Giguère.

Additional information

Manuscript submitted March 26, 2012.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Giguère, N., Blais, C. On the Optimization of Compressibility and Hardenability of Sinter-Hardenable PM Steels. Metall Mater Trans A 44, 4774–4787 (2013). https://doi.org/10.1007/s11661-013-1826-4

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-013-1826-4

Keywords

Navigation