Skip to main content
Log in

Microstructures and Properties of Nanocrystalline NiFe Alloy With and Without Particulate TiC Reinforcement by Mechanical Alloying

  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

In the current study, Ni50Fe50 alloy powders were prepared using a high-energy planetary ball mill. The effects of TiC addition (0, 5, 10, 20, and 30 wt pct) and milling time on the sequence of alloy formation, the microstructure, and microhardness of the product were studied. The structure of solid solution phase, the lattice parameter, lattice strain, and grain size were identified by X-ray diffraction analysis. The correlation between the apparent densities and the milling time is explained by the morphologic evolution of the powder particles occurring during the high-energy milling process. The powder morphology was examined using scanning electron microscopy. It was found that FCC γ (Fe–Ni) solid solution was formed after 10 hours of milling, and this time was reduced to 7 hours when TiC was added. Therefore, brittle particles (TiC) accelerate the milling process by increasing crystal defects leading to a shorter diffusion path. Observations of polished cross section showed uniform distribution of the reinforcement particles. The apparent density increases with the increasing TiC content. It was also found that the higher TiC amount leads to larger lattice parameter, higher internal strain, and lower grain size of the alloy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. K. Lin, T. Yang, and W. Tsai: Mater. Sci. Eng. A., 2006, vol. 416, pp. 226–31.

    Article  Google Scholar 

  2. M.J. Donachie and S.J. Donachie: in Superalloys A Technical Guide, 2nd ed, Chapt. 1, ASM International, Materials Park, 2002, pp. 1–9.

  3. S.C. Tjong and K.C. Lau: Mater. Lett., 1999, vol. 41, pp. 2415–19.

    Article  Google Scholar 

  4. N. Durlu: J. Eur. Ceram. Soc., 1999, vol. 19, pp. 2415–19.

    Article  CAS  Google Scholar 

  5. M. Sherif El-Eskandarany: Mechanical Alloying for Fabrication of Advanced Engineering Materials, Noyes Publications/William Andrew Publishing, New York, 2001, pp. 1–5.

  6. L. Lu and M.O. Lai: in Mechanical Alloying, Kluwer Academic Publisher, Boston, 1998, p. 26.

  7. C. Suryanarayana: Prog. Mater. Sci., 2001, vol. 46, pp. 1–184.

    Article  CAS  Google Scholar 

  8. J.B. Fogagnolo, M.H. Robert, and J.M. Torralba: Mater. Sci. Eng. A., 2006, vol. 426, pp. 85–94.

    Article  Google Scholar 

  9. E. Lifshin: in X-ray Characterization of Materials, Wiley-VCH, New York, 1999.

  10. E. Jartych, J.K. Zurawicz, D. Oleszak, and M. Pekala: Nanostruct. Mater., 1999, vol. 12, pp. 927–30.

    Article  Google Scholar 

  11. A. Guittoum, A. Layadi, A. Bourzami, H. Tafatc, N. Souami, S. Boutarfaia and D. Lacour: J. Magn. Magn. Mater., 2008, vol. 320, pp. 1385–92.

    Article  CAS  Google Scholar 

  12. S.D. Kaloshkin, V.V. Tcherdyntsev, I.A. Tomilin, Yu.V. Baldokhin and E.V. Shelekhov: Phys. Rev. B: Condens. Matter., 2001, vol. 299, pp. 236–41.

    CAS  Google Scholar 

  13. Yu.V. Baldokhin, V.V. Tcherdyntsev, S.D. Khaloshkin, G.A. Kochetov and Yu. A. Pustov: J. Magn. Magn. Mater. 1999, vol. 203, pp. 313–15.

    Article  CAS  Google Scholar 

  14. J. Benjamin: Annu. Rev. Mater. Sci., 1983, vol. 13, 279–300.

  15. D. Oleszak and P.H. Shingu: Mater. Sci. Eng. A., 1994, vol. 181–182, pp. 1217–21.

    Google Scholar 

  16. S. Bid and S.K. Pradhan: Mater. Chem. Phys., 2004, vol. 84, pp. 291–01.

    Article  CAS  Google Scholar 

  17. V.V. Tcherdyntsev, S.D. Kaloshkin, I.A. Tomilin, E.V. Shelekhov, and Yu.V. Baldokhin: Nanostruct. Mater., 1999, vol. 12, pp. 139–42.

    Article  Google Scholar 

  18. A. Djekoun, B. Bouzabata, A. Otmani, and J.M. Greneche: Catal. Today, 2004, vol. 89, pp. 319–23.

    Article  CAS  Google Scholar 

  19. R. M. Davis, B. McDermott, and C. C. Koch: Metall. Trans. A, 1988, vol. 19, pp. 2867–74.

    Article  Google Scholar 

  20. G.M. Candido, V. Guido, G. Silva and K.R. Cardoso: Mater. Sci. Forum, 2010, vol. 660–661, pp. 317–24.

  21. A. Alizadeh, E. Taheri-Nassaj, and H.R. Baharvandi: Bull. Mater. Sci., 2011, vol. 34, pp. 1039–48.

    Article  CAS  Google Scholar 

  22. J.B. Fogagnolo, F. Velasco, M.H. Robert, and J.M. Torralba: Mater. Sci. Eng. A, 2003, vol. 342, pp. 131–43.

    Article  Google Scholar 

  23. S. Kamrani, R. Riedel, S.M. Seyed Reihani, and H.J. Kleebe: J. Compos. Mater., 2010, vol. 44, pp. 312–26.

    Article  Google Scholar 

  24. S.S. Razavi Tousi, R. Yazdani Rad, E. Salahi, and M. Razavi: Mater. Sci., 2009, vol. 27, pp. 875–84.

    Google Scholar 

  25. D.R. Amador and J.M. Torralba: J. Mater. Process. Technol., 2003, vol. 143–144, vol. 776–78.

Download references

Acknowledgments

The authors would like to thank the Office of the Research Affairs of Islamic Azad University, Najafabad Branch, for financial support of this research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohammad Hassan Shirani Bidabadi.

Additional information

Manuscript submitted November 11, 2012.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Shirani Bidabadi, M.H., Saidi, A., Kasiri, M. et al. Microstructures and Properties of Nanocrystalline NiFe Alloy With and Without Particulate TiC Reinforcement by Mechanical Alloying. Metall Mater Trans A 44, 4800–4808 (2013). https://doi.org/10.1007/s11661-013-1822-8

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-013-1822-8

Keywords

Navigation