Skip to main content

Advertisement

Log in

Work Hardening Behavior in Steel with Multiple TRIP Mechanisms

  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

Transformation-induced plasticity (TRIP) behavior was studied in steel with the composition Fe-0.07C-2.85Si-15.3Mn-2.4Al-0.017N that exhibited two TRIP mechanisms. The initial microstructure consisted of both ε- and α-martensites with 27 pct retained austenite. TRIP behavior in the first 5 pct strain was predominately austenite transforming to ε-martensite (Stage I), but upon saturation of Stage I, the ε-martensite transformed to α-martensite (Stage II). Alloy segregation also affected the TRIP behavior with alloy-rich regions producing TRIP just prior to necking. This behavior was explained by first-principles calculations which revealed that aluminum significantly affected the stacking fault energy in Fe-Mn-Al-C steels by decreasing the unstable stacking fault energy and promoting easy nucleation of ε-martensite. The addition of aluminum also raised the intrinsic stacking fault energy and caused the ε-martensite to be unstable and transform to α-martensite under further deformation. The two-stage TRIP behavior produced a high strain hardening exponent of 1.4 and led to an ultimate tensile strength of 1165 MPa and elongation to failure of 35 pct.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. J. Fekete and J. Hall: NIST Internal Report 6668, National Institute of Standards and Technology, Washington, DC, May 2012.

  2. D.K. Matlock and J.G. Speer: Proceedings of the 3 rd Int. Conf. on Structural Steels, H.C. Lee, ed., The Korean Institute of Metals and Materials, Seoul, Korea, 2006, pp. 774–81.

  3. L. Bracke, L. Kestens, and J. Penning: Scripta Mater., 2007, vol. 57, pp. 385–88.

    Article  CAS  Google Scholar 

  4. K. Spencer, J.D. Embury, K.T. Conlon, M. Veron, and Y. Brechet: Mater. Sci. Eng. A, 2004, vols. 387–389, pp. 873–81.

  5. E.Yang, H. Zurob, and J. McDermid: Proc. MS&T, 2010, pp. 1914–25.

  6. S. Takaki, T. Furuya, and Y. Tokunaga: ISIJ Int., 1990, vol. 30, pp. 632–38.

    Article  CAS  Google Scholar 

  7. K. Sipos, L. Remy, and A. Pineau: Metall. Trans. A, 1976, vol. 7A, pp. 857–64.

    CAS  Google Scholar 

  8. X. Sun, K.S. Choi, A. Soulami, W.N. Liu, and M.A. Khaleel: Mater. Sci. Eng., 2009, vol. 526, pp. 140–49.

    Article  Google Scholar 

  9. B. Jiang, X. Qi, S. Yang, W. Zhou, and T.Y. Hsu: Acta Mater., 1998, vol. 46(2), pp. 501–10.

    Article  CAS  Google Scholar 

  10. J.P. Hirth: Metall. Trans., 1970, vol. 1, pp. 2367–74.

    Article  Google Scholar 

  11. O. Grässel, G. Frommeyer, C. Derder, and H. Hofmann: J. Phys. IV France, 1997, vol. 7, pp. C5-383–88.

  12. Y-K. Lee and C-S. Choi: Metall. Mater. Trans. A, 2000, vol. 31A, pp. 355–60.

    Article  CAS  Google Scholar 

  13. S. Allain, J.-P. Chateau, O. Bouaziz, S. Migot and N. Guelton: Mater. Sci. Eng., 2004, vols. 387–389A, pp. 158–62.

  14. H. Schumann: J. Kristall Tchnik, 1974, vol. 10, pp. 1141–50.

  15. P. Yu Volosevich, V.N. Grindnev, and Y.N. Petrov: Phys. Met. Metallogr., 1976, vol. 42, pp. 126–30.

    Google Scholar 

  16. T. Suzuki, H. Kojima, K. Suzuki, T. Hashimoto, and M. Ichihara: Acta Metall., 1977, vol. 25, pp. 1151–62.

    Article  Google Scholar 

  17. J.W. Brooks, M.H. Loretto, and R.E. Smallman: Acta Metall., 1979, vol. 27, pp. 1839–47.

    Article  CAS  Google Scholar 

  18. J.W. Brooks, M.H. Loretto, and R.E. Smallman: Acta Metall., 1979, vol. 27, no. 12, pp. 1829–38.

    Article  CAS  Google Scholar 

  19. G.B. Olson and M. Cohen: Metall. Trans. A, 1975, vol. 6A, pp. 791–95.

    CAS  Google Scholar 

  20. T. Suzuki, H. Kojima, K. Suzuki, T Hashimot, and M Ichihara: Acta Metall., 1977, vol. 25, no. 10, pp. 1151–62.

    Article  Google Scholar 

  21. F. Lecroisey and A. Pineau: Metall. Trans., 1972, vol. 3, pp. 387–96.

    Article  CAS  Google Scholar 

  22. C. Zener: Trans. TMS-AIME, 1946, vol. 167, pp. 513–34.

    Google Scholar 

  23. L. Kaufman and M. Cohen: Trans. TMS-AIME, 1956, vol. 206, pp. 1393–01.

    Google Scholar 

  24. L.E. Murr, K.P. Staudhammer, and S.S. Hecker: Metall. Trans. A, 1982, vol. 13A, pp. 627–35.

    Google Scholar 

  25. J. Talonen and H. Hanninen: Acta Mater., 2007, vol. 55, pp. 6108–18.

    Article  CAS  Google Scholar 

  26. G. Frommeyer, U. Brux, and P. Neumann: ISIJ Int., 2003, vol. 77(3), pp. 438–46.

    Article  CAS  Google Scholar 

  27. M. Cai, H. Ding, Z. Tang, H. Lee, and Y. Lee: Steel Res. Int., 2011, vol. 82(3), pp. 242–48.

    Article  CAS  Google Scholar 

  28. N.I. Medvedeva, M.S. Park, D.C. Van Aken, and J.E. Medvedeva: arXiv:1208.0310v1 [cond-mat.mtrl-sci], 2012.

  29. ASTM E 8-08, ASTM International, USA, 2008.

  30. A.K. De, D.C. Murdock, M.C. Mataya, J.G. Speer, and D.K. Matlock: Scripta Mater., 2004, vol. 50, pp. 1445–49.

    Article  CAS  Google Scholar 

  31. Thermfact and FTT-Technologies, FactSage 6.2, Aachen, Germany, 2009.

  32. T.S.Byun: Acta Mater., 2003, vol. 51, pp. 3063–71 .

    Article  CAS  Google Scholar 

  33. D.A. Mirzayev, V.M. Schastlivtsev, and A.G. Tayzetdinova: Phys. Met. Metall., 1987, vol. 63, pp. 99–105.

    Google Scholar 

  34. M. Palumbo: CALPHAD, 2008, vol. 32, pp. 693–08.

    Article  CAS  Google Scholar 

  35. Payson and Savage: Trans. ASM, 1944, vol. 33, pp. 261–75.

  36. K. Ishida: J. Alloys Compd., 1995, vol. 220, pp. 126–31.

    Article  CAS  Google Scholar 

  37. M. Gomez: ISIJ Int., 2009, vol. 49, no. 2, pp. 302–11.

    Article  CAS  Google Scholar 

  38. Y.G. Kimand: Key Eng. Mater., 1993, vols. 84–85, pp. 461–71.

Download references

Acknowledgments

This work was supported in part by the National Science Foundation (NSF) and the Department of Energy under contract CMMI 0726888. The authors gratefully acknowledge the support of the Graduate Center for Materials Research and in particular Dr. Eric Bohannen for help with X-ray diffraction. Meghan McGrath was supported by a Department of Education GAANN fellowship under contract P200A0900048.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. C. Van Aken.

Additional information

Manuscript submitted August 3, 2012.

Rights and permissions

Reprints and permissions

About this article

Cite this article

McGrath, M.C., Van Aken, D.C., Medvedeva, N.I. et al. Work Hardening Behavior in Steel with Multiple TRIP Mechanisms. Metall Mater Trans A 44, 4634–4643 (2013). https://doi.org/10.1007/s11661-013-1820-x

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-013-1820-x

Keywords

Navigation