Skip to main content
Log in

Characterization of Flow Behavior of Semi-Solid Slurries with Low Solid Fractions

  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

Semi-solid slurry casting is a metal-forming process that involves transforming liquid metal into slurry having a low solid fraction and then forming the slurry into solid parts. To successfully apply this slurry-forming process, it is necessary to fully understand the flow behavior of semi-solid slurries. This present work applied the rapid quenching method and the modified gravity fluidity casting to investigate the flow behavior, which involves characterizations of the initial solid fraction, fluidity, and microstructure of semi-solid slurries. Three commercial aluminum alloys were used in this study: 383 (Al-Si11Cu), 356 (Al-Si7MgFe), and 7075 (Al-Zn6MgCu) alloys. The results show that the initial solid fractions can be controlled by varying the rheocasting time. The rapid quenching mold can be used to determine the initial solid fractions. In this method, it is important to apply the correcting procedure to account for growth during quenching and to include all the solid phases. Results from the fluidity study of semi-solid slurries show that the fluidity decreases as the initial solid fraction increases. The decrease is relatively rapid near the low end of the initial solid fraction curves, but is quite slow near the high end of the curves. All the three alloys follow this trend. The results also demonstrate that the slurries that contain high solid fractions of up to 30 pct can still flow well. The microstructure characterization results show that the solid particles in the slurries flow uniformly in the channel. A uniform and fine microstructure with limited phase segregation is observed in the slurry cast samples.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. D.H. Kirkwood, M. Suery, P. Kapranos, H.V. Atkinson, and K.P. Young: Semi-solid processing of alloys, Springer-Verlag, London, 2009, pp. 17–145.

    Book  Google Scholar 

  2. J. Wannasin, S. Janudom, T. Rattanochaikul, R. Canyook, R. Burapa, T. Chucheep, and S. Thanabumrungkul: Trans. Nonferrous Met. Soc. China, 2010, vol. 20, pp. s1010–15.

    Article  Google Scholar 

  3. R. Canyook, S. Petsut, S. Wisutmethangoon, M.C. Flemings, and J. Wannasin: Trans. Nonferrous Met. Soc. China, 2010, vol. 20, 1649–55.

    Article  CAS  Google Scholar 

  4. J. Wannasin, R. Canyook, R. Burapa, L. Sikong, and M.C. Flemings: Scripta Mater., 2008, vol. 59, pp. 1091–94.

    Article  CAS  Google Scholar 

  5. R. Canyook, J. Wannasin, S. Wisuthmethangoon, and M.C. Flemings: Acta Mater., 2012, vol. 60, pp. 3501–10.

    Article  CAS  Google Scholar 

  6. T. Chucheep, R. Canyook, T. Rattanochaikul, S. Janudom, S. Wisutmethangoon, and J. Wannasin: Adv. Mater. Res., 2011, vol. 337, pp. 439- 42.

    Article  CAS  Google Scholar 

  7. J. Wannasin, R.A. Martinez, and M.C. Flemings: Solid State Phenom., 2006, vol. 116–117 pp. 366–69.

    Article  Google Scholar 

  8. M. Di Sabatino, F. Syverten, L. Arnberg, A. Nordmark: J. Cast Met. Res., 2005, vol. 18, pp. 59–62.

    Article  Google Scholar 

  9. Z. Guo, N. Suanders, A.P. Miodownik, and J.-Ph. Schille: Mater. Sci. Eng. A, 2005, vols. A413–414, pp. 465–69.

  10. J.W. Gibbs and P.F. Mendez: Scripta Mater., 2008, vol. 58, pp. 699–702.

    Article  CAS  Google Scholar 

  11. D. Chen, H. Zhang, H. Jiang, and J. Cui: Mat.-Wiss. U. Werkstofftech, 2011, vol. 42, pp. 500–05.

  12. R.A. Martinez and M.C. Flemings: Metall. Mater. Trans. A, 2005, vol. 36A, pp. 2205–10.

    Article  CAS  Google Scholar 

  13. M.C. Flemings: Solidification processing, McGraw-Hill, New York, 1974, 1–15.

    Google Scholar 

  14. M.C. Flemings, E. Niyama, and H.F. Taylor: AFS Trans., 1961, vol. 69, pp. 625–35.

    CAS  Google Scholar 

  15. M. Di Sabatino: Fluidity of aluminum foundry alloys (Thesis), Norwegian University of Science and Technology, Throndheim, 2005, pp. 7–14.

    Google Scholar 

  16. L. Bäckerud, L. Arnberg, and G. Chai: Solidification Characteristics of Aluminium Alloys: Dendrite coherency, Skanaluminium, IL, 1996, pp. 220–40.

  17. M. Hirai, K. Takebayashi, Y. Yoshikawa, and R. Yamagushi: ISIJ Int., 1993, vol. 33, pp. 405–12.

    Article  CAS  Google Scholar 

  18. Z. Koren, H. Ronsenson, E.M. Gutman, YaB Unigovki, and A. Eliezer: J. Light Met., 2002, vol. 2, pp. 81–87.

    Article  Google Scholar 

  19. Y. Murakami, K. Miwa, M. Kito, T. Honda, K. Yorioka, N. Kanetake, and S. Tada: Light Met., 2012, pp. 297–301.

Download references

Acknowledgments

This work was supported by the Higher Education Research Promotion and the National Research University Project of Thailand, Office of the Higher Education Commission (Contract No. ENG540551b). In addition, the authors gratefully thank the funding from Prince of Songkla University for Ph.D. 50% Scholarship, PSU Ph.D. Scholarship, the Royal Golden Jubilee Ph.D. program (Grant No. PHD/0173/2550 and Grant No. PHD/0134/2551), and the Thai Research Fund (Contract No. MRG5280215). We also thank the Innovative Metal Technology (IMT) team, Mrs. N. Mahathanninwong for data analysis, Mr. J. Thammajai for helping with the experiments, and Mr. J. Sawatdiwong for equipment construction. In addition, we would like to thank the PSU Department of Mining and Materials Engineering for facilities.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jessada Wannasin.

Additional information

Manuscript submitted September 19, 2012.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chucheep, T., Wannasin, J., Canyook, R. et al. Characterization of Flow Behavior of Semi-Solid Slurries with Low Solid Fractions. Metall Mater Trans A 44, 4754–4763 (2013). https://doi.org/10.1007/s11661-013-1819-3

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-013-1819-3

Keywords

Navigation