Skip to main content

Advertisement

Log in

The Effect of Mn-rich Precipitates on the Strength of AZ31 Extrudates

  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

The commercial magnesium alloy AZ31 has been subjected to a range of solution treatment regimes. These have then been extruded and their microstructure, texture, and precipitate populations characterized along with their mechanical properties. During the solution treatment, Mn-enriched particles develop and these remain largely unchanged throughout subsequent processing steps. A direct link between grain size and texture has been found, with coarser-grained specimens showing sharper textures. VPSC modeling has been used to quantify the effect of texture on the tensile yield strength, and it has been found that sharper textures have larger tensile yield strengths. Since coarser grain sizes have reduced Hall–Petch hardening, but have an additional texture-strengthening component, a region on the Hall–Petch plot for tension has been identified in which there is an insensitivity of strength to grain size. This has been quantitatively modeled and a texture-modified Hall–Petch plot for tension has been developed. The Mn-rich particles have also been shown to provide precipitate strengthening to the alloy of up to 40 MPa. The compressive behavior was clearer, with the compressive yield strength being directly correlated to grain size and unaffected by texture or precipitation hardening.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

References

  1. E.A. Brandes, G.B. Brook: Smithells Light Metals Handbook, Butterworth-Heinemann, Oxford, 1997, pp. 40–54.

    Google Scholar 

  2. I.J. Polmear: Light Alloys Metallurgy of the Light Metals, 3rd edn, Arnold, London, 1995, pp. 196–246.

    Google Scholar 

  3. M.M. Avedesian and H. Baker: ASM Specialty Handbook, Magnesium and Magnesium Alloys, ASM International, Metals Park, 1999, pp. 258–63.

    Google Scholar 

  4. T. Laser, M.R. Nürnberg, A. Janz, Ch. Hartig, D. Letzig, R. Schmid-Fetzer, and R. Bormann: Acta Mater., 2006, vol. 54, pp. 3033–41.

  5. P. Cao, M. Qian, and D.H. St John: Scripta Mater., 2006, vol. 54, pp. 1853–58.

  6. C. Liu, F. Pan, W. Wang: Mater. Sci. Forum, 2007, vol. 546–549, pp. 395–98.

    Article  Google Scholar 

  7. S.A. Khan, Y. Miyashita, Y. Mutoh, Z.B. Sajuri: Mater. Sci. Eng. A, 2006, vol. 420, pp. 315–21.

    Article  Google Scholar 

  8. S.R. Agnew, D.W. Brown, C.N. Tomé: Acta Mater. 2006, vol. 54, pp. 4841–52.

    Article  CAS  Google Scholar 

  9. R.A. Lebensohn, C. N. Tomé: Acta. Metall. Mater., 1993, vol. 41, pp. 2611–24.

    Article  CAS  Google Scholar 

  10. H. Wang, B. Raesinia, P.D. Wu, S.R. Agnew, C.N. Tomé: Int. J. Solids Struct., 2010, vol. 47, pp. 2905–17.

    Article  CAS  Google Scholar 

  11. D. Atwell: Deakin University, Australia, unpublished research, 2007.

  12. J. Bohlen, P. Dobroň, J. Swiostek, D. Letzig, F. Chmelík, P. Lukáč, K.U. Kainer: Mater. Sci. Eng. A, 2007, vol. 462, pp. 302–06.

    Article  Google Scholar 

  13. A. Jain, O. Duygulu, D.W. Brown, C.N. Tomé, S.R. Agnew: Mater. Sci. Eng. A, 2008, vol. 486, pp. 545–55.

    Article  Google Scholar 

  14. Y.N. Wang, C.I. Chang, C.J. Lee, H.K. Lin, and J.C. Huang: Scripta Mater., 2006, vol. 55, pp. 637–40.

    Article  CAS  Google Scholar 

  15. N. Stanford and M.R. Barnett: J. Alloy Compd., 2008, vol. 466, 182–88.

  16. M.R. Barnett, Z. Keshavarz, A.G. Beer, D. Atwell: Acta Mater., 2004, vol. 52, pp. 5093–5103.

    Article  CAS  Google Scholar 

  17. D.L. Yin, J.T. Wang, J.Q. Liu, X. Zhao: J. Alloy Compd., 2009, vol. 478, pp. 789–95.

    Article  CAS  Google Scholar 

  18. I.J. Polmear: Mater. Forum, 2004, vol. 28, pp. 1–14.

    CAS  Google Scholar 

  19. J. Jain, W.J. Poole, C.W. Sinclair, M.A. Gharghouri: Scripta Mater., 2010, vol. 62, pp. 301–04.

    Article  CAS  Google Scholar 

  20. N. Stanford, M.R. Barnett: Mater. Sci. Eng. A, 2009, vol. 516, pp. 226–34.

    Article  Google Scholar 

  21. N. Stanford, J. Geng, Y.B. Chun, C.H.J. Davies, J.F. Nie, M.R. Barnett: Acta Mater., 2012, vol. 60, pp. 218–28.

    Article  CAS  Google Scholar 

  22. T. Sheppard: Extrusion of Aluminium Alloys, 1999, Kluwer Academic Publishers, Dordrecht, pp. 151–56.

Download references

Acknowledgments

The work described in this paper was funded by the Australian Research Council’s Centre of Excellence for Design in Light Metals. The authors would like to thank Mohan Setty, Andrew Sullivan, Kevin Magniez, and Rosey Van Driel for their assistance with the experimental sections of this work. Discussions with Matthew Barnett and Adam Taylor are also gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nicole Stanford.

Additional information

Manuscript submitted December 17, 2012.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Stanford, N., Atwell, D. The Effect of Mn-rich Precipitates on the Strength of AZ31 Extrudates. Metall Mater Trans A 44, 4830–4843 (2013). https://doi.org/10.1007/s11661-013-1817-5

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-013-1817-5

Keywords

Navigation