Skip to main content
Log in

Notch Impact Behavior of Oxide-Dispersion-Strengthened (ODS) Fe20Cr5Al Alloy

  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

In this article, tensile tests as well as LS and LT notched Charpy impact tests were performed at the temperature range between 77 K (−196 °C) and 473 K (200 °C) on an oxide-dispersion-strengthened (ODS) Fe20Cr6Al0.5Y2O3 hot-rolled tube. The absorbed energy values in the range of high temperatures of LS notched specimens are considerably higher than those of LT notched specimens; however, such values tend to converge as temperature increases. Ductile fracture on the normal planes to RD with delaminations parallel to the tube surface was observed in the temperature range between room temperature (RT) and 473 K (200 °C). Delaminations of crack divider type were observed in LT specimens, whereas delaminations of crack arrester type were observed in LS specimens. The yttria particles in the grain boundaries and the transverse plastic anisotropy are the possible reasons why the delaminations were parallel to the tube surface.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  1. S. Ukai and M. Fujiwara: J. Nucl. Mater., 2002, vols. 307-311, pp. 749-57.

    Article  Google Scholar 

  2. S. Jitsukawa, A. Kimura, A. Kohyama, R.L. Klueh, A.A. Tavassoli, B. van der Schaaf, G.R. Odette, J.W. Rensman, M. Victoria, and C. Petersen: J. Nucl. Mater., 2004, vols. 329-333, pp. 39-46.

    Article  Google Scholar 

  3. M.M. Abu-Khader: Progr. Nucl. Energ., 2009, vol. 51, pp. 225-35.

    Article  Google Scholar 

  4. G.S. Bauer: J. Nucl. Mater., 2010, vol. 398, pp. 19-27.

    Article  CAS  Google Scholar 

  5. J. Chen, M.A. Pouchon, A. Kimura, P. Jung, and W. Hoffelner: J. Nucl. Mater., 2009, vols. 386-388, pp. 143-6.

    Article  Google Scholar 

  6. S. Ukai, M. Harada, H. Okada, M. Inoue, S. Nomura, S. Shikakura, T. Nishida, M. Fujiwara, and K. Asabe: J. Nucl. Mater., 1993, vol. 204, pp. 74-80.

    Article  CAS  Google Scholar 

  7. M.J. Alinger, G.R. Odette, and G.E. Lucas: J. Nucl. Mater., 2002, vols. 307-311, pp. 484-9.

    Article  Google Scholar 

  8. R. Kasada, N. Toda, K. Yutani, H.S. Cho, H. Kishimoto, and A. Kimura: J. Nucl. Mater., 2007, vols. 367-370, pp. 222-8.

    Article  Google Scholar 

  9. C. Capdevila, U. Miller, H. Jelenak, and H. Bhadeshia: Mater. Sci. Eng. A, 2001, vol. 316, pp. 161-5.

    Article  Google Scholar 

  10. C. Capdevila, F.G. Caballero, and C.G. de Andres: Mater. Sci. Technol., 2003, vol. 19, pp. 581-6.

    Article  CAS  Google Scholar 

  11. M. Klimiankou, R. Lindau, A. Moslang, and J. Schroder: Powder Metall., 2005, vol. 48, pp. 277-87.

    Article  CAS  Google Scholar 

  12. M. Klimiankou, R. Lindau, and A. Möslang: J. Crystal Growth, 2003, vol. 249, pp. 381-7.

    Article  CAS  Google Scholar 

  13. G. Pimentel, I. Toda-Caraballo, J. Chao, and C. Capdevila: J. Mater. Sci., 2012, vol. 47, pp. 5605-16.

    Article  CAS  Google Scholar 

  14. N. Tsuji, S. Okuno, Y. Koizumi, and Y. Minamino: Mater. Trans., 2004, vol. 45, pp. 2272-81.

    Article  CAS  Google Scholar 

  15. R. Song, D. Ponge, and D. Raabe: Acta Mater., 2005, vol. 53, pp. 4881-92.

    Article  CAS  Google Scholar 

  16. Y. Kimura, T. Inoue, F. Yin, and K. Tsuzaki: ISIJ Int., 2010, vol. 50, pp. 152-61.

    Article  CAS  Google Scholar 

  17. J.D. Embury, N.J. Petch, A.E. Wraith, and E.S. Wright: Trans. Metall. Soc. AIME, 1967, vol. 239, pp. 114-32.

    CAS  Google Scholar 

  18. D.W. Kum, T. Oyama, J. Wadsworth, and O.D. Sherby: J. Mech. Phys., 1983, vol. 31, pp. 173-86.

    Article  Google Scholar 

  19. Y. Kimura: Bull. Iron Steel Inst. Jpn., 2009, vol. 14, p. 154.

    CAS  Google Scholar 

  20. R. Hill: The Mathematical Theory of Plasticity, The Clarendon Press, Oxford, U.K., 1950, p. 254.

    Google Scholar 

  21. P. Brozzo and G. Buzzichelli: Scripta Metall., 1976, vol. 10, pp. 235-40.

    CAS  Google Scholar 

  22. C.M. Yen and C.A. Stickels: Metall. Trans., 1970, vol. 1, pp. 3037-47.

    CAS  Google Scholar 

  23. W. Zhou and N.L. Loh: Scripta Mater., 1996, vol. 34, pp. 633-9.

    Article  CAS  Google Scholar 

  24. N.Y. Zolotorevsky and N.Y. Krivonosova: Mater. Sci. Eng. A, 1996, vol. 205, pp. 239-46.

    Article  Google Scholar 

  25. E.C. Oliver, M.R. Daymond, and P.J. Withers: Acta Mater., 2004, vol. 52, pp. 1937-51.

    Article  CAS  Google Scholar 

  26. J. Gil Sevillano, J. Alkorta, D. González, S. Van Petegem, U. Stuhr, and H. Van Swygenhoven: Adv. Eng. Mater., 2008, vol. 10, pp. 951-4.

    Article  Google Scholar 

  27. W.F. Hosford: The Mechanics of Crystals and Textured Polycrystals, Oxford University Press, New York, NY, 1993, p. 152.

    Google Scholar 

  28. M. Taguchi, H. Sumitomo, R. Ishibashi, and Y. Aono: Mater. Trans., 2008, vol. 49, pp. 1303-10.

    Article  CAS  Google Scholar 

  29. M. Pozuelo, F. Carreno, and O.A. Ruano: Compos. Sci. Technol., 2006, vol. 66, pp. 2671-6.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

PM 2000 is a trademark of Plansee GmbH. The authors acknowledge the financial support of the Spanish Ministerio de Economia e Innovación (MINECO) in the form of a Coordinate Project in the Energy Area of Plan Nacional 2009 (ENE2009-13766-C04-01). G.P. acknowledges MINECO for financial support in the form of PhD Research Grant (FPI). This research was supported by ORNL’s Shared Research Equipment (SHaRE) User Facility, which is sponsored by the Office of Basic Energy Sciences, U.S. Department of Energy.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to C. Capdevila.

Additional information

Manuscript submitted December 5, 2012.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chao, J., Capdevila, C., Serrano, M. et al. Notch Impact Behavior of Oxide-Dispersion-Strengthened (ODS) Fe20Cr5Al Alloy. Metall Mater Trans A 44, 4581–4594 (2013). https://doi.org/10.1007/s11661-013-1815-7

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-013-1815-7

Keywords

Navigation