Skip to main content

Advertisement

Log in

Dynamic Fracture of a Zr-based Bulk Metallic Glass

  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

In the present study, dynamic fracture experiments are performed on fully amorphous Liquidmetal-1 (LM-1), a Zr-based BMG, to better understand fracture initiation and propagation in notched specimens. Experiments are conducted on notched (110 μm notch radius) four-point bend specimens using an instrumented modified split-Hopkinson pressure bar apparatus. The results of these experiments suggest that the critical dynamic stress intensity factor achieved by the notched LM-1 specimens is ~110 MPa m1/2, which is similar to the fracture toughness determined from previous quasi-static fracture experiments. This insensitivity of the fracture toughness to crack tip loading rate suggests negligible loading-rate sensitivity on the dynamic fracture initiation toughness in LM-1. In situ high-speed camera images of the notched sample during the dynamic loading process show multiple fracture initiation attempts and subsequent arrests prior to catastrophic fracture initiation. Controlled stress wave loading experiments designed to induce sub-critical levels of damage in the notched specimens show extensive deformation banding extending 150 to 200 μm outward from the notch. The deformation bands, nominally perpendicular to each other, run along the direction of the notch and perpendicular to it. They are consistent with slip-line fields in notched samples of elastic perfectly plastic materials. Subsequent loading of the damaged specimen again shows several attempts at crack initiation followed by blunting; the initial sub-critical damage in the region around the notch is understood to increase the energy required for catastrophic specimen failure and is consistent with an increase in the effective notch radius due to preexisting damage.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Atakan Peker and William L. Johnson, Appl. Phys. Lett., 63 (1993) 2342-2344.

    Article  Google Scholar 

  2. C. J. Gilbert, R. O. Ritchie and W. L. Johnson, Appl. Phys. Lett., 71 (1997) 476-478.

    Article  CAS  Google Scholar 

  3. John J. Lewandowski and Peravudh Lowhaphandu, Philos. Mag. A, 82 (2002) 3427-3441.

    Article  CAS  Google Scholar 

  4. Peravudh Lowhaphandu and John J. Lewandowski, Scripta Mater., 38 (1998) 1811-1817.

    Article  CAS  Google Scholar 

  5. Peravudh Lowhaphandu, L. A. Ludrosky, S. L. Montgomery and John J. Lewandowski, Intermetallics, 8 (2000) 487-492.

    Article  CAS  Google Scholar 

  6. R. Dale Conner, Ares J. Rosakis, William L. Johnson and David M. Owen, Scripta Mater., 37 (1997) 1373-1378.

    Article  Google Scholar 

  7. H.A. Bruck, T. Christman, A.J. Rosakis, and W.L. Johnson: Scripta Metall. Mater., 1994, vol. 30, pp. 429–434.

    Article  CAS  Google Scholar 

  8. Ghatu Subhash, Robert J. Dowding and Laszlo Kecskes, Mater. Sci. Eng., A, 334 (2002) 33-40.

    Article  Google Scholar 

  9. W. Zheng, Y. J. Huang, G. Y. Wang, P. K. Liaw and J. Shen, Metall and Mat Trans A, 42 (2011) 1491-1498.

    Article  Google Scholar 

  10. W. D. Liu and K. X. Liu, J. Appl. Phys., 108 (2010) 033511-033516.

    Article  Google Scholar 

  11. Hao Li, Ghatu Subhash, Xin-Lin Gao, Laszlo J. Kecskes and Robert J. Dowding, Scripta Mater., 49 (2003) 1087-1092.

    Article  CAS  Google Scholar 

  12. T. C. Hufnagel, T. Jiao, Y. Li, L-Q. Xing and K. T. Ramesh, J. Mater. Res., 17 (2002) 1441-1445.

    Article  CAS  Google Scholar 

  13. Hao Li, Ghatu Subhash, Laszlo J. Kecskes and Robert J. Dowding, Materials Science and Engineering: A, 403 (2005) 134-143.

    Article  Google Scholar 

  14. Hugh A. Bruck, Ares J. Rosakis and William L. Johnson, J. Mater. Res., 11 (1996) 503-511.

    Article  CAS  Google Scholar 

  15. Jun Lu, Guruswami Ravichandran and William L. Johnson, Acta Mater., 51 (2003) 3429-3443.

    Article  Google Scholar 

  16. George P. Sunny, Vikas Prakash and John J. Lewandowski, J. Mater. Res., 22 (2007) 389-401.

    Article  CAS  Google Scholar 

  17. Y. F. Xue, H. N. Cai, L. Wang, F. C. Wang and H. F. Zhang, Materials Science and Engineering: A, 473 (2008) 105-110.

    Article  Google Scholar 

  18. Morgana Martin, T. Sekine, T. Kobayashi, Laszlo Kecskes and Naresh N. Thadhani, Metall. Mater. Trans. A, 38 (2007) 2689-2696.

    Article  CAS  Google Scholar 

  19. Fuping Yuan, Vikas Prakash and John J. Lewandowski, J. Mater. Res., 22 (2007) 402-411.

    Article  CAS  Google Scholar 

  20. George P. Sunny, Fuping Yuan, Vikas Prakash and John J. Lewandowski, J. Appl. Phys., 104 (2008) 093522.

    Article  Google Scholar 

  21. M. Martin, N. N. Thadhani, L. Kecskes and R. Dowding, Scripta Mater., 55 (2006) 1019-1022.

    Article  CAS  Google Scholar 

  22. M. Martin, L. Kecskes and N. N. Thadhani, Scripta Mater., 59 (2008) 688-691.

    Article  CAS  Google Scholar 

  23. M. Q. Jiang, Z. Ling, J. X. Meng and L. H. Dai, Philosophical Magazine, 88 (2008) 407-426.

    Article  CAS  Google Scholar 

  24. M.M. Trexler and N.N. Thadhani: Prog. Mater Sci., 2010, vol. 55, pp. 759-839.

    Article  CAS  Google Scholar 

  25. David M. Owen, Ares J. Rosakis and William L. Johnson, Mater. Res. Soc. Symp., 554 (1999) 419.

    Article  CAS  Google Scholar 

  26. Daniel Rittel and Ares J. Rosakis, Eng. Fract. Mech., 72 (2005) 1905-1919.

    Article  Google Scholar 

  27. Daniel Rittel, A. Pineau, J. Clisson and L. Rota, Exp. Mech., 42 (2002) 247-252.

    Article  Google Scholar 

  28. Gil Weisbrod and Daniel Rittel, Int. J. Fracture, 104 (2000) 89-103.

    Article  Google Scholar 

  29. John J. Lewandowski, Mater. Trans., JIM, 42 (2001) 633-637.

    Article  CAS  Google Scholar 

  30. John J. Lewandowski, Mostafa Shazly and Ali Shamimi Nouri, Scripta Mater., 54 (2006) 337-341.

    Article  CAS  Google Scholar 

  31. T. Nakamura, C. F. Shih and L. B. Freund, Eng. Fract. Mech., 25 (1986) 323-339.

    Article  Google Scholar 

  32. William L. Johnson, Mater. Sci. Forum, 225-227 (1996) 35-50.

    Article  Google Scholar 

  33. C. J. Gilbert, J. W. Ager III, V. Schroeder, R. O. Ritchie, J. P. Lloyd and J. R. Graham, Appl. Phys. Lett., 74 (1999) 3809-3811.

    Article  CAS  Google Scholar 

  34. Katherine M. Flores and Reinhold H. Dauskardt, Scripta Mater., 41 (1999) 937-943.

    Article  CAS  Google Scholar 

  35. Peravudh Lowhaphandu, S. L. Montgomery and John J. Lewandowski, Scripta Mater., 41 (1999) 19-24.

    Article  CAS  Google Scholar 

  36. Xiaojun Gu, S. Joseph Poon, Gary J. Shiflet and J.J. Lewandowski, Scripta Mater., 60 (2009) 1027-1030.

    Article  CAS  Google Scholar 

  37. Toshiji Mukai, T. G. Nieh, Yoshihito Kawamura, Akihisa Inoue and Kenji Higashi, Scripta Mater., 46 (2002) 43-47.

    Article  CAS  Google Scholar 

  38. Y. Zhang, W.H. Wang and A.L. Greer, Nature Materials, 5 (2006) 857-860.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors acknowledge Dr. Fuping Yuan for discussions and assistance with the setup of the dynamic fracture experiments, Mike Bifano for his assistance with the SEM images, and Liquidmetal, Inc. for the supply of the LM-1 plates. The authors also acknowledge partial funding for this work provided by Case Western Reserve University (Case Prime Fellowship), the American Society for Engineering Education (SMART Scholarship for Service), ONR-N00014-03-1-0205, and DARPA-ARO-DAAD19-01-0525. Funding for the high-speed camera was provided by NSF MRI, CMS 0079458.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vikas Prakash.

Additional information

Manuscript submitted June 6, 2012.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sunny, G., Prakash, V. & Lewandowski, J.J. Dynamic Fracture of a Zr-based Bulk Metallic Glass. Metall Mater Trans A 44, 4644–4653 (2013). https://doi.org/10.1007/s11661-013-1810-z

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-013-1810-z

Keywords

Navigation