Skip to main content
Log in

The Use of Passive Initiation Aids in Self-Propagating High-Temperature Synthesis

  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

A modification to initiation aid-assisted ignition in bomb calorimetry that involves systemically blending boron and potassium nitrate adjacent to, and within, a bulk structural energetic elemental power blend was developed. Linear regression was used to estimate the nominal heat of reaction for the primary reaction. The technique was applied to the synthesis of TiB2 as a validation study to see if proximity to the literature values could be achieved. X-ray diffraction was used to characterize the product phases of the reactions to determine the extent and the identity of the product phases and any by-products that may have formed as a result of adding the initiation aid. The experimental data indicate the technique approximates the heat of reaction value for the synthesis of TiB2 from Ti/B powder blends and the formation of TiB2 is supported by volume fraction analysis by X-ray diffraction. Some experimental uncertainty remains as X-ray diffraction revealed that the commercially labeled amorphous boron reactant exhibited some crystalline character and may be semicrystalline, as opposed to being completely amorphous.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. J.J. Moore and H.J. Feng: Prog. Mater. Sci., 1995, vol. 39, pp. 243–73.

    Article  CAS  Google Scholar 

  2. L. Christodoulou and J.D. Venables: JOM, 2003, vol. 55, pp. 39–45.

    Article  Google Scholar 

  3. J.J. Moore and H.J. Feng: Prog. Mater. Sci., 1995, vol. 39, pp. 275–316.

    Article  CAS  Google Scholar 

  4. Z.A. Munir: Ceram. Bull., 1988, vol. 67, pp. 342–49.

    CAS  Google Scholar 

  5. Z.A. Munir and U. Anselmi-Tamburini: Mater. Sci. Rep., 1989, vol. 3, pp. 277–365.

    Article  CAS  Google Scholar 

  6. R.W. Rice: J. Mater. Sci., 1991, vol. 26, pp. 6533–6541.

  7. J. Subrahmanyam and M. Vijayakumar: J. Mater. Sci., 1992, vol. 27, pp. 6249–73.

    Article  CAS  Google Scholar 

  8. S.C. Tjong and Z.Y. Ma: Mater. Sci. Eng., 2000, vol. 29, pp. 49–113.

    Article  Google Scholar 

  9. R. Martin, S.L. Kampe, J.S. Marte and T.P. Pete: Metall. Mater. Trans. A, 2002, vol. 33A, pp. 2747–53.

    Article  CAS  Google Scholar 

  10. L.H. Chiu, D.C. Nagle and L.A. Bonney: Metall. Mater. Trans. A, 1999, vol. 30A, pp. 781–88.

    CAS  Google Scholar 

  11. A.S. Rogachev, A.S. Mukasyan and A.G. Merzhanov: Dokl. Phys. Chem., 1987, vol. 297 pp. 1240–43.

    Google Scholar 

  12. C.R. Bowen and B. Derby: Acta Metall. Mater., 1995, vol. 43, pp. 3903–13.

    Article  CAS  Google Scholar 

  13. B. Rupp, J.B. Holt and J. Wong: CALPHAD, 1992, vol. 16, pp. 377–86.

    Article  CAS  Google Scholar 

  14. V.M. Shkiro, V.N. Doroshin and I.P. Borovinskaya: Combust. Explos. Shock Waves, 1981, vol. 16, pp. 370–74.

    Article  Google Scholar 

  15. E.A. Jeffers: Virginia Polytechnic Institute and State University, Blacksburg, VA, unpublished research (MS Thesis), 2006.

  16. R.W. Rice, G.Y. Richardson, J.M. Kunetz, T. Schroeter and W.J. McDonough: Adv. Ceram. Mater., 1987, vol. 2, pp. 222–27.

    CAS  Google Scholar 

  17. I. Barin: Thermochemical Data of Pure Substances, 2nd ed., VCH, Weinheim, 1973, p. 1523.

  18. W.L. Frankhouser, K.W. Brendley and M.C. Kieszek: Gasless Combustion Synthesis of Refractory Compounds, Noyes Publications, Park Ridge, 1985, p. 52.

    Google Scholar 

  19. F.R. de Boer, R. Boom, W.C.M. Mattens, A.R. Miedema and A.K. Niessen: Cohesion in Metals, North-Holland, Amsterdam, 1988, p. 130.

  20. P. Villars and K. Cenzual: Pearson’s Crystal Data, ASM International, Materials Park, 2010.

  21. B.D. Cullity and S.R. Stock: Elements of X-Ray Diffraction, 3rd ed., Prentice Hall, Upper Saddle River, 2001, pp. 351–55.

    Google Scholar 

  22. J. Payne: Michigan Technological University, Houghton, MI, unpublished research (software code), 1992.

  23. D.T. Cromer and J.B. Mann: Acta Crystallogr A, 1968, vol. 24, pp. 321–23.

    Article  Google Scholar 

  24. National Bureau of Standards (U.S.), 1981, vol. 25, p. 73.

  25. National Bureau of Standards (U.S.), 1984, vol. 25, pp. 43.

  26. N.Y. Alekseyevskly, O.S. Ivanov, I.I. Rayevskiy and M.V. Stepanov: Phys. Met. Metall., 1967, vol. 23, pp. 1–28.

    Google Scholar 

  27. N.F.M. Henry, K. Lonsdale: International Tables for X-Ray Crystallography, The Kynoch Press, Birmingham, 1952.

    Google Scholar 

  28. J.R. Holden and C.W. Dickinson: J. Phys. Chem., 1975, vol. 79, pp. 249–56.

    Article  CAS  Google Scholar 

  29. M.V. Karpets, Y.V. Milman, O.M. Barabash, N.P. Korzhova, O.N. Senkov, D.B. Miracle, T.N. Legkaya and I.V. Voskoboynik: Intermetallics, 2003, vol. 11, pp. 241–49.

    Article  CAS  Google Scholar 

  30. G. Lobier and J. P. Marcon: C.R. Hebd: Seances Acad. Sci. C, 1969, vol. 268, pp. 1132–35.

  31. P.H. Mayrhofer, D. Music and J.M. Schneider: J. Appl. Phys., 1996, vol. 100(9), pp. 40961–65.

    Google Scholar 

  32. S. Mohr, B.H.K. Muller, Y. Grin and H.G. Von Schnering: J. Inorg. Gen. Chem., 1996, vol. 622, pp. 1035–37.

  33. C. Qiu, S.M. Opalka, G.B. Olson and D.L. Anton: Int. J. Mater. Res., 2006, vol. 97, pp. 1484–93.

    CAS  Google Scholar 

  34. L. Smrcok, V. Langer and J. Krestan: Acta Crystallogr. C, 2006, vol. 62, pp. i83–84.

    Article  Google Scholar 

  35. R.V. Lenth: Technometrics, 1989, vol. 31, pp. 469–73.

    Article  Google Scholar 

  36. B. Roduit et al.: J. Therm. Anal. Calorim., 2005, vol. 80, pp. 229–36.

  37. Y. Yano: Propellants Explos. Pyrotech., 1989, vol. 14, pp. 187–89.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. L. Kampe.

Additional information

Manuscript submitted September 11, 2012.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Baker, A.H., Kampe, S.L. The Use of Passive Initiation Aids in Self-Propagating High-Temperature Synthesis. Metall Mater Trans A 44, 4725–4733 (2013). https://doi.org/10.1007/s11661-013-1808-6

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-013-1808-6

Keywords

Navigation