Metallurgical and Materials Transactions A

, Volume 45, Issue 1, pp 47–54 | Cite as

Dynamic Micro-Strain Analysis of Ultrafine-Grained Aluminum Magnesium Alloy Using Digital Image Correlation

  • Yuzheng Zhang
  • Troy D. Topping
  • Enrique J. Lavernia
  • Steven R. Nutt
Symposium: Deformation, Damage, and Fracture of Light Metals and Alloys

Abstract

Tensile tests were performed in situ on an ultrafine-grained (UFG) Al-Mg alloy using a micro-tensile module in a scanning electron microscope. The micro-strain evolution was tracked and measured using digital image correlation (DIC). A fine random speckle pattern was required to achieve high resolution and accuracy of strain measurement using DIC. To produce the speckle pattern, a patterning method was developed using electron beam lithography to deposit a gold speckle pattern. The nanoscale feature size of this gold pattern (45 nm) was useful for identifying the micro-strain among individual grains of the UFG Al-Mg alloy. Microstructural aspects of the UFG Al-Mg alloy were revealed by analysis of electron backscattered diffraction (EBSD) patterns. Finally, the effect of the UFG Al-Mg alloy microstructure on the nanoscale deformation mechanism was investigated by combining EBSD and DIC data in a contour map. This combined technique provides a method for direct measurement of micro-strain and is potentially useful for deformation studies of a wide range of nanostructured materials.

References

  1. 1.
    Peters WH, Ranson WF (1982) Digital imaging techniques in experimental stress analysis. Opt Eng 21: 427-432.Google Scholar
  2. 2.
    Sutton MA, Wolters WJ, Peters WH, Ranson WF, McNeill SR (1983) Determination of displacements using an improved digital correlation method. Image Vision Comput 1(3): 1333-1339.Google Scholar
  3. 3.
    Yoneyama S, Kitagawa A, Iwata S, Tani K, Kikuta H (2007) Bridge deflection measurement using digital image correlation. Exp Tech 31: 34-40.CrossRefGoogle Scholar
  4. 4.
    Tschopp MA, Bartha BB, Porter WJ, Murray PT, Fairchild SB (2009) Microstructure-dependent local strain behavior in polycrystals through in situ scanning electron microscope tensile experiments. Metall Mater Trans A 40: 2363-2368.CrossRefGoogle Scholar
  5. 5.
    Kang J, Ososkov Y, Embury JD, Wilkinson DS (2007) Digital image correlation studies for microscopic strain distribution and damage in dual phase steels. Scr Mater 56: 999-1002.CrossRefGoogle Scholar
  6. 6.
    Zhou P, Goodson KE (2001) Subpixel displacement and deformation gradient measurement using digital image/speckle correlation (DISC). Opt Eng 40: 1613-1620.CrossRefGoogle Scholar
  7. 7.
    Kar NK, Hu Y, Ahn B, Nutt SR (2012) Diametral compression of pultruded composite rod. Compos Sci Technol vol 72 (11) 1283-1290.CrossRefGoogle Scholar
  8. 8.
    Berfield TA, Patel JK, Shimmin RG, Braun PV, Lambros J, Sottos NR (2007) Micro- and nanoscale deformation measurement of surface and internal planes via digital image correlation. Exp Mech 47: 51-62.CrossRefGoogle Scholar
  9. 9.
    Jin H, Lu WY, Korellis J, (2008) Micro-scale deformation measurement using the digital image correlation technique and scanning electron microscope imaging. J Strain Analysis 43: 719-727.CrossRefGoogle Scholar
  10. 10.
    Tanaka Y, Naito K, Kishimoto S, Kagawa Y (2011) Development of a pattern to measure multiscale deformation and strain distribution via in situ FE-SEM observations. Nanotechnology 22: 115704.CrossRefGoogle Scholar
  11. 11.
    Ahn B, Nutt SR (2010) Strain mapping of Al-Mg alloy with multi-scale grain structure using digital image correlation method. Exp Mech 50: 117-123.CrossRefGoogle Scholar
  12. 12.
    Wang H, Xie H, Li Y, Zhu J (2012) Fabrication of micro-scale speckle pattern and its applications for deformation measurement. Meas Sci Technol 23: 035402.CrossRefGoogle Scholar
  13. 13.
    Kammers AD, Daly S (2011) Small-scale patterning methods for digital image correlation under scanning electron microscopy. Meas Sci Technol 22: 125501.CrossRefGoogle Scholar
  14. 14.
    Vieu C, Carcenac1 F, Pépin A, Chen Y, Mejias M, Lebib A, Manin-Ferlazzo L, Couraud L, Launois H (2000) Electron beam lithography: resolution limits and applications. Appl Surf Sci vol 164 (1–4): 111–117.CrossRefGoogle Scholar
  15. 15.
    Newbery AP, Ahn B, Topping TD, Pao PS, Nutt SR, Lavernia EJ (2008) Large UFG Al alloy plates from cryomilling. J Mater Process Technol 203(1-3): 37-45.CrossRefGoogle Scholar
  16. 16.
    Topping TD, Ahn B, Li Y, Nutt SR, Lavernia EJ (2012) Influence of process parameters on the mechanical behavior of an ultrafine-grained Al alloy. Metall Mater Trans A 43: 505-519.CrossRefGoogle Scholar
  17. 17.
    Witkin DB, Lavernia EJ (2006) Synthesis and mechanical behavior of nanostructured materials via cryomilling. Prog Mater Sci 51(1): 1-60.CrossRefGoogle Scholar
  18. 18.
    Topping T.D., Li Y., Lavernia E.J., Manigandan K., and Srivatsan T.S. (2011) Adv. Mater. Res. 410: 175–86.CrossRefGoogle Scholar
  19. 19.
    Sutton MA, Li N, Joy DC, Reynolds AP, Li X (2007) Scanning electron microscopy for quantitative small and large deformation measurements part I: SEM imaging at magnifications from 200 to 10,000. Exp Mech 47: 775-787.CrossRefGoogle Scholar
  20. 20.
    Seeger A (2004) Progress and problems in the understanding of the dislocation relaxation processes in metals. Mater Sci Eng A 370: 50-66.CrossRefGoogle Scholar
  21. 21.
    Lee Z, Radmilovic V, Ahn B, Lavernia EJ, Nutt SR (2010) Tensile deformation and fracture mechanism of bulk bimodal ultrafine-grained Al-Mg alloy. Metall Mater Trans A vol 41A: 795-801.CrossRefGoogle Scholar
  22. 22.
    Ahn B, Lavernia EJ, SR Nutt (2008) Dynamic observations of deformation in an ultrafine-grained Al-Mg alloy with bimodal grain structure. J Mater Sci 43: 7403-08.CrossRefGoogle Scholar

Copyright information

© The Minerals, Metals & Materials Society and ASM International 2013

Authors and Affiliations

  • Yuzheng Zhang
    • 1
  • Troy D. Topping
    • 2
  • Enrique J. Lavernia
    • 2
  • Steven R. Nutt
    • 1
  1. 1.Department of Chemical Engineering and Materials ScienceUniversity of Southern CaliforniaLos AngelesUSA
  2. 2.Department of Chemical Engineering and Materials ScienceUniversity of CaliforniaDavisUSA

Personalised recommendations