Skip to main content
Log in

Formation Mechanism of Type IV Failure in High Cr Ferritic Heat-Resistant Steel-Welded Joint

  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

The mechanism of type IV failure has been investigated by using a conventional 9Cr ferritic heat-resistant steel Gr.92. In order to clarify the main cause of type IV failure, different heat treatments were performed on the base metal in order to change the prior austenite grain (PAG) size and precipitate distribution after applying the heat-affected zone (HAZ) simulated thermal cycle at the peak temperature of around A c3 (A c3 HAZ thermal cycle) and postweld heat treatment (PWHT). The microstructural evolution during the A c3 HAZ thermal cycle and PWHT was investigated by means of scanning electron microscope (SEM), electron backscatter diffraction (EBSD), electron probe microanalysis (EPMA), and transmission electron microscope (TEM). It was found that M23C6 carbides were scarcely precipitated at the newly formed fine PAG, block, and lath boundaries in A c3 HAZ-simulated Gr.92, because the carbide forming elements such as Cr and C were segregated at the former PAG and block boundaries of the base metal. On the other hand, if all the boundaries were covered by sufficient M23C6 carbides by homogenization of the alloying elements prior to applying the HAZ thermal cycle, the creep strength was much improved even if the fine PAG was formed. From these results, it is concluded that fine-grained microstructure cannot account for the occurrence of type IV failure, and it only has a small effect during long-term creep. The most important factor is the precipitate formation behavior at various boundaries. Without sufficient boundary strengthening by precipitates, the microstructure of A c3 HAZ undergoes severe changes even during PWHT and causes premature failure during creep.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. F. Abe and M. Tabuchi: Sci. Technol. Weld. Join., 2004, vol. 9, pp. 22–29.

    Article  CAS  Google Scholar 

  2. F. Abe, M. Tabuchi, M. Kondo, and S. Tsukamoto: Int. J. Press. Vess. Pip., 2007, vol. 84, pp. 44–52.

    Article  CAS  Google Scholar 

  3. M. Matsui, M. Tabuchi, T. Watanabe, K. Kubo, and F. Abe: Proc. 7th Liege Conf., Belgium, Sept. 2002.

  4. H. Hirata and K. Ogawa: Weld. Int., 2005, vol. 19, pp. 109–17.

    Article  Google Scholar 

  5. H. Hirata and K. Ogawa: Weld. Int., 2005, vol. 19, pp. 118–24.

    Article  Google Scholar 

  6. K. Shinozaki, D. Li, H. Kuroki, H. Harada, K. Ohishi, and T. Sato: Sci. Technol. Weld. Join., 2003, vol. 8, pp. 289–95.

    Article  CAS  Google Scholar 

  7. S.T. Kimmins: Met. Sci., 1983, vol. 17, pp. 519–32.

    CAS  Google Scholar 

  8. T. Shirane, S. Tsukamoto, K. Tsuzaki, Y. Adachi, T. Hanamura, Y. Shimizu, and F. Abe: Sci. Technol. Weld. Join., 2009, vol. 14, pp. 698–707.

    Article  CAS  Google Scholar 

  9. D. Li, K. Shinozaki, H. Kuroki, H. Harada, and K. Ohishi: Sci. Technol. Weld. Join., 2003, vol. 8, pp. 296–302.

    Article  CAS  Google Scholar 

  10. S. Albert, M. Kondo, M. Tabuchi, F. Yin, K. Sawada, and F. Abe: Metall. Mater. Trans. A, 2005, vol. 36A, pp. 333–43.

    Article  CAS  Google Scholar 

  11. Y. Hasegawa, M. Sugiyama, and K. Kawakami: Proc. Creep and Fracture in High Temperature Components, Zurich, Switzerland, April 2009, pp. 1–12.

  12. H. Hongo, M. Tabuchi, and T. Watanabe: Metall. Mater. Trans. A, 2012, vol. 43A, pp. 1163–73.

    Article  Google Scholar 

  13. J.A. Francis, W. Muzur, and H.K.D.H. Bhadeshia: Mater. Sci. Technol., 2006, vol. 22, pp. 1387–95.

    Article  CAS  Google Scholar 

  14. M. Matsui, M. Tabuchi, T. Watanabe, K. Kubo, J. Kinugawa, and F. Abe: ISIJ Int., 2001, vol. 41, pp. S126–S130.

    Article  CAS  Google Scholar 

  15. F. Abe, M. Tabuchi, S. Tsukamoto, and T. Shirane: Int. J. Press. Vess. Pip., 2010, vol. 87, pp. 598–604.

    Article  CAS  Google Scholar 

  16. D. Li, K. Shinozaki, H. Harada, and K. Ohishi: Metall. Mater. Trans. A, 2005, vol. 36A, pp. 107–15.

    Article  CAS  Google Scholar 

  17. D. Li and K. Shinozaki: Sci. Technol. Weld. Join., 2005, vol. 10, pp. 544–49.

    Article  CAS  Google Scholar 

  18. P. Hofer, H. Cerjak, and P. Warbichler: Mater. Sci. Technol., 2000, vol. 16, pp. 1221–25.

    CAS  Google Scholar 

  19. E. Letofsky and H. Cerjak: Sci. Technol. Weld. Join., 2004, vol. 9, pp. 31–36.

    Article  CAS  Google Scholar 

  20. Y. Hasegawa, M. Ohgami, and Y. Okamura: Proc. 3rd Conf., University of Wales Swansea, Swansea, U.K., Apr. 2001, pp. 457–66.

  21. D.J. Smith, N.S. Walker, and S.T. Kimmins: Int. J. Press. Vess. Pip., 2003, vol. 80, pp. 617–27.

    Article  CAS  Google Scholar 

  22. M. Tabuchi, H. Hongo, T. Watanabe, and Y. Takahashi: J. Press. Vess. Technol., 2009, vol. 131, pp. 1–6.

    Article  Google Scholar 

  23. Y. Li, H. Hongo, M. Tabuchi, Y. Takahashi, and Y. Monma: Int. J. Press. Vess. Pip., 2009, vol. 86, pp. 585–92.

    Article  CAS  Google Scholar 

  24. P. Mayr and H. Cerjak: Trans. Ind. Inst. Met., 2010, vol. 63, pp. 131–36.

    Article  CAS  Google Scholar 

  25. P. Mayr, S. Mitche, H. Cerjak, and S.M. Allen: J. Eng. Mater. Technol., 2011, vol. 133, pp. 1–7.

    Article  Google Scholar 

  26. M. Kondo, M. Tabuchi, S. Tsukamoto, F. Yin, and F. Abe: Sci. Technol. Weld. Join., 2006, vol. 11, pp. 216–23.

    Article  CAS  Google Scholar 

  27. P. Mayr, I. Holzer, M. Albu, G. Kothleitner, H. Cerjak, and S.M. Allen: Proc. 6th Int. Conf. on Advances in Materials Technology for Fossil Power Plant, Santa Fe, NM, Sept. 2010.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Tsukamoto.

Additional information

Manuscript submitted January 15, 2013.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Liu, Y., Tsukamoto, S., Shirane, T. et al. Formation Mechanism of Type IV Failure in High Cr Ferritic Heat-Resistant Steel-Welded Joint. Metall Mater Trans A 44, 4626–4633 (2013). https://doi.org/10.1007/s11661-013-1801-0

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-013-1801-0

Keywords

Navigation