Skip to main content

An EBSD Study of the Deformation of Service-Aged 316 Austenitic Steel


Electron backscatter diffraction (EBSD) has been used to examine the plastic deformation of an ex-service 316 austenitic stainless steel at 297 K and 823 K (24 °C and 550 °C) at strain rates from 3.5 × 10−3 to 4 × 10−7 s−1. The distribution of local misorientations was found to depend on the imposed plastic strain following a lognormal distribution at true strains <0.1 and a gamma distribution at strains >0.1. At 823 K (550 °C), the distribution of misorientations depended on the applied strain rate. The evolution of lattice misorientations with increasing plastic strain of up to 0.23 was quantified using the metrics kernel average misorientation, average intragrain misorientation, and low angle misorientation fraction. For strain rate down to 10−5 s−1, all metrics were insensitive to deformation temperature, mode (tension vs compression), and orientation of the measurement plane. The strain sensitivity of the different metrics was found to depend on the misorientation ranges considered in their calculation. A simple new metric, proportion of undeformed grains, is proposed for assessing strain in both the aged and unaged materials. Lattice misorientations develop with strain faster in aged steel than in unaged material, and most of the metrics were sensitive to the effects of thermal aging. Ignoring aging effects leads to significant overestimation of the strains around welds. The EBSD results were compared with nanohardness measurements, and good agreement was established between the two techniques of assessing plastic strain in aged 316 steel.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22


  1. 1.

    Although generally referred to in the literature as LABF, in the current study, the metric based on the detection by the EBSD processing software of misorientations between adjacent measurement points >2 and <15 deg will be referred to as LAMF because the misorientations concerned do not necessarily arise from the presence of a low angle boundary but more frequently by the gradual accumulation of misorientation over the distance between adjacent measurement points.

  2. 2.

    Finite element simulations indicate that in a compression test, the strain at one-third of the way along the axis is close to the overall measured strain.


  1. 1.

    P. Marshall: Austenitic Stainless Steels: Microstructure and Mechanical Properties, Elsevier Applied Science, Essex, 1984, pp. 80–102, 185.

  2. 2.

    J.R. Davis: ASM Speciality Handbook: Stainless Steel, ASM International, Materials Park, Ohio, 1994, pp. 20–32.

  3. 3.

    D. Fahr: Analysis of Stress-Strain Behavior of Type 316 Stainless Steel, OAK Ridge National Laboratory, Tennessee, 1973, pp. 1–22.

  4. 4.

    P.L. Andresen, and M.M. Morra: J. Nucl. Mater., 2008, vol. 383, pp. 97-111.

    Article  CAS  Google Scholar 

  5. 5.

    J. Hou, Q.J. Peng, T. Shoji, J.Q. Wang, E.H. Han, and W. Ke: Corros. Sci., 2011, vol. 53, pp. 2956-62.

    Article  CAS  Google Scholar 

  6. 6.

    A. Turnbull, K. Mingard, J.D. Lord, B. Roebuck, D.R. Tice, K.J. Mottershead, N.D. Fairweather, and A.K. Bradbury: Corros. Sci., 2011, vol. 53, pp. 3398-415.

    Article  CAS  Google Scholar 

  7. 7.

    M. Kamaya: Mater. Charact., 2009, vol. 60, pp. 125-32.

    Article  CAS  Google Scholar 

  8. 8.

    P.J. Buchanan, V. Randle, and P.E.J. Flewitt: Scr. Mater., 1997, vol. 37, pp. 1511-18.

    Article  CAS  Google Scholar 

  9. 9.

    K. Masayuki: Ultramicroscopy, 2011, vol. 111, pp. 1189-99.

    Article  Google Scholar 

  10. 10.

    R. Yoda, T. Yokomaku, and N. Tsuji: Mater. Charact., 2010, vol. 61, pp. 913-22.

    Article  CAS  Google Scholar 

  11. 11.

    K.Z. Baba-Kishi: J. Mater. Sci., 2002, vol. 37, pp. 1715-46.

    Article  CAS  Google Scholar 

  12. 12.

    R.A. Schwarzer, D.P. Field, B.L. Adams, M. Kumar, and A.J. Schwartz: in Electron Backscatter Diffraction in Materials Science, A.J. Schwartz, M. Kumar, and B.L. Adams, eds., Kluwer Academic/Plenum Publishers, London, 2009, pp. 1–19.

  13. 13.

    A. Arsenlis, and D.M. Parks: Acta Mater., 1999, vol. 47, pp. 1597-611.

    Article  CAS  Google Scholar 

  14. 14.

    A.J. Wilkinson, and D.J. Dingley: Acta Metall. Mater., 1991, vol. 39, pp. 3047-55.

    Article  CAS  Google Scholar 

  15. 15.

    T. Maitland and S. Sitzman: in Scanning Microscopy for Nanotechnology: Techniques and Applications, W. Zhou and Z.L. Wang, eds., Springer Science, New York, 2007, pp. 41–75.

  16. 16.

    F.J. Humphreys: J. Mater. Sci., 2001, vol. 36, pp. 3833-54.

    Article  CAS  Google Scholar 

  17. 17.

    S.I. Wright, M.M. Nowell, and D.P. Field: Microsc. Microanal., 2011, vol. 17, pp. 316-29.

    Article  CAS  Google Scholar 

  18. 18.

    M. Kamaya, A.J. Wilkinson, and J.M. Titchmarsh: Acta Mater., 2006, vol. 54, pp. 539-48.

    Article  CAS  Google Scholar 

  19. 19.

    M. Kamaya, A.J. Wilkinson, and J.M. Titchmarsh: Nucl. Eng. Des., 2005, vol. 235, pp. 713-25.

    Article  CAS  Google Scholar 

  20. 20.

    A. Sáez-Maderuelo, L. Castro, and G. Diego: J. Nucl. Mater., 2011, vol. 416, pp. 75-79.

    Article  Google Scholar 

  21. 21.

    J.J. Sanchez-Hanton, and R.C. Thomson: Mater. Sci. Eng. A, 2007, vol. 460-461, pp. 261-67.

    Google Scholar 

  22. 22.

    E.M. Lehockey, Y. Lin, and O.E. Lepik: in Electron Backscatter Diffraction in Materials Science, A.J. Schwartz, M. Kumar, and B.L. Adams, eds., Kluwer Academic, New York, 2000, pp. 247–60.

  23. 23.

    J. Kang, B. Bacroix, H. Regle, K. Oh, and H. Lee: Acta Mater., 2007, vol. 55, pp. 4935-46.

    Article  CAS  Google Scholar 

  24. 24.

    C. Fukuoka, K. Morishima, H. Yoshizawa, and K. Mino: Scr. Mater., 2002, vol. 46, pp. 61-66.

    Article  CAS  Google Scholar 

  25. 25.

    R. M’Saoubi, and L. Ryde: Mater. Sci. Eng. A, 2005, vol. 405, pp. 339-49.

    Article  Google Scholar 

  26. 26.

    K. Fujiyama, K. Mori, D. Kaneko, H. Kimachi, T. Saito, R. Ishii, and T. Hino: Int. J. Pressure Vessels Piping, 2009, vol. 86, pp. 570-77.

    Article  CAS  Google Scholar 

  27. 27.

    D.J. Child, G.D. West, and R.C. Thomson: Acta Mater., 2011, vol. 59, pp. 4825-34.

    Article  CAS  Google Scholar 

  28. 28.

    D.P. Field, K.R. Magid, I.N. Mastorakos, J.N. Florando, D.H. Lassila, and J.W. Morris: Philos. Mag., 2010, vol. 90, pp. 1451-64.

    Article  CAS  Google Scholar 

  29. 29.

    S. Scheriau, and R. Pippan: Mater. Sci. Eng. A, 2008, vol. 493, pp. 48-52.

    Article  Google Scholar 

  30. 30.

    A.J. Hayter: Probability and Statistics for Engineers and Scientists, Brooks/Cole Centage Learning, Boston, 2012, pp. 199–202.

  31. 31.

    S. Zaefferer: Cryst. Res. Technol., 2011, vol. 46, pp. 607-28.

    Article  CAS  Google Scholar 

  32. 32.

    D. Dingley: J. Microsc., 2004, vol. 213, pp. 214-24.

    Article  CAS  Google Scholar 

  33. 33.

    O.V. Mishin, A. Godfrey, and D.J. Jensen: in Electron Backscatter Diffraction in Materials Science, A.J. Schwartz, M. Kumar, and B.L. Adams, eds., Springer Science, New York, 2009, pp. 263–75.

  34. 34.

    H. Mirzadeh, J.M. Cabrera, A. Najafizadeh, and P.R. Calvillo: Mater. Sci. Eng. A, 2012, vol. 538, pp. 236-45.

    Article  CAS  Google Scholar 

  35. 35.

    F.J. Humphreys, Y. Huang, I. Brough, and C. Harris: J. Microsc., 1999, vol. 195, pp. 212-16.

    Article  CAS  Google Scholar 

  36. 36.

    I. Brough, P.S. Bate, and F.J. Humphreys: Mater. Sci. Technol., 2006, vol. 22, pp. 1279-86.

    Article  CAS  Google Scholar 

  37. 37.

    A. Agresti: An Introduction to Categorical Data Analysis, Wiley, New Jersey, 2007, pp. 35–36.

  38. 38.

    Z. Govindarajulu: Statistical Techniques in Bioassay, S. Karger AG, Basel, 2001, pp. 197–99.

  39. 39.

    T.S. Byun, N. Hashimoto, and K. Farrell: Acta Mater., 2004, vol. 52, pp. 3889-99.

    Article  CAS  Google Scholar 

  40. 40.

    S. Venugopal, S.L. Mannan, and Y.V.R.K. Prasad: J. Nucl. Mater., 1995, vol. 227, pp. 1-10.

    Article  CAS  Google Scholar 

  41. 41.

    K.G. Samuel, S.L. Mannan, and P. Rodriguez: Acta Metall., 1988, vol. 36, pp. 2323-27.

    Article  CAS  Google Scholar 

  42. 42.

    E.I. Samuel, B.K. Choudhary, and K.B.S. Rao: Scr. Mater., 2002, vol. 46, pp. 507-12.

    Article  CAS  Google Scholar 

  43. 43.

    C.G. Shastry, M.D. Mathew, K.B.S. Rao, and S.D. Pathak: Mater. Sci. Technol., 2007, vol. 23, pp. 1215-22.

    Article  CAS  Google Scholar 

  44. 44.

    P. Rodriguez: Bull. Mater. Sci., 1984, vol. 6, pp. 653-63.

    Article  Google Scholar 

  45. 45.

    M.T. Nogueira, and M.A. Fortes: Scr. Metall., 1984, vol. 18, pp. 505-08.

    Article  CAS  Google Scholar 

  46. 46.

    B.P. Kashyap, K. McTaggart, and K. Tangri: Philos. Mag., 1988, vol. 57, pp. 97-114.

    Article  CAS  Google Scholar 

  47. 47.

    B.P. Kashyap, and K. Tangri: Acta Metall. Mater., 1995, vol. 43, pp. 3971-81.

    Article  CAS  Google Scholar 

  48. 48.

    D.A. Hughes, Q. Liu, D.C. Chrzan, and N. Hansen: Acta Mater., 1997, vol. 45, pp. 105-12.

    Article  CAS  Google Scholar 

  49. 49.

    W. Pantleon: J. Mater. Res., 2002, vol. 17, pp. 2433-41.

    Article  CAS  Google Scholar 

  50. 50.

    D.A. Hughes, D.C. Chrzan, Q. Liu, and N. Hansen: Phys. Rev. Lett., 1998, vol. 81, pp. 4664-67.

    Article  CAS  Google Scholar 

  51. 51.

    B. Bay, N. Hansen, D.A. Hughes, and D. Kuhlmann-Wilsdorf: Acta Metall. Mater., 1992, vol. 40, pp. 205-19.

    Article  CAS  Google Scholar 

  52. 52.

    W. Pantleon, and N. Hansen: Acta Mater., 2001, vol. 49, pp. 1479-93.

    Article  CAS  Google Scholar 

  53. 53.

    M. Janecek, and K. Tangri: J. Mater. Sci., 1995, vol. 30, pp. 3820-26.

    Article  CAS  Google Scholar 

  54. 54.

    K.J. Kurzydlowski, K.J. McTaggart, and K. Tangri: Philos. Mag., 1990, vol. 61, pp. 61-83.

    Article  CAS  Google Scholar 

  55. 55.

    C.C. Merriman, D.P. Field, and P. Trivedi: Acta Mater., 2008, vol. 1, pp. 153-62.

    Google Scholar 

  56. 56.

    P.G. Gottschalk, and J.R. Dunn: Anal. Biochem., 2005, vol. 343, pp. 54-65.

    Article  CAS  Google Scholar 

  57. 57.

    M. Predeleanu and P. Gilormini: Advanced Methods in Materials Processing Defects, Elsevier Science B.V, Amsterdam, 1997, pp. 100–02.

  58. 58.

    O.V. Rofman, P.S. Bate, I. Brough, and F.J. Humphreys: J. Microsc., 2009, vol. 233, pp. 432-41.

    Article  CAS  Google Scholar 

  59. 59.

    H.J. Frost and M.F. Ashby: Deformation-Mechanism Maps: The Plasticity and Creep of Metals and Ceramics, Elsevier Science & Technology, London, 1982, p. 60.

  60. 60.

    R.W. Evans and B. Wilshire: Introduction to Creep, The Institute of Materials, London, 1993, pp. 38–49.

Download references


The authors wish to acknowledge the partial funding of the current project and the provision of the materials used in the study by EDF Energy.

Author information



Corresponding author

Correspondence to David N. Githinji.

Additional information

Manuscript submitted January 12, 2013.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Githinji, D.N., Northover, S.M., Bouchard, P.J. et al. An EBSD Study of the Deformation of Service-Aged 316 Austenitic Steel. Metall Mater Trans A 44, 4150–4167 (2013).

Download citation


  • Plastic Strain
  • True Strain
  • Dynamic Strain Aging
  • Aged Material
  • Misorientation Distribution