Skip to main content
Log in

Solidification and Microstructural Evolution of Hypereutectic Al-15Si-4Cu-Mg Alloys with High Magnesium Contents

  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

The low coefficient of thermal expansion and good wear resistance of hypereutectic Al-Si-Mg alloys with high Mg contents, together with the increasing demand for lightweight materials in engine applications have generated an increasing interest in these materials in the automotive industry. In the interests of pursuing the development of new wear-resistant alloys, the current study was undertaken to investigate the effects of Mg additions ranging from 6 to 15 pct on the solidification behavior of hypereutectic Al-15Si-4Cu-Mg alloy using thermodynamic calculations, thermal analysis, and extensive microstructural examination. The Mg level strongly influenced the microstructural evolution of the primary Mg2Si phase as well as the solidification behavior. Thermodynamic predictions using ThermoCalc software reported the occurrence of six reactions, comprising the formation of primary Mg2Si; two pre-eutectic binary reactions, forming either Mg2Si + Si or Mg2Si + α-Al phases; the main ternary eutectic reaction forming Mg2Si + Si + α-Al; and two post-eutectic reactions resulting in the precipitation of the Q-Al5Mg8Cu2Si6 and θ-Al2Cu phases, respectively. Microstructures of the four alloys studied confirmed the presence of these phases, in addition to that of the π-Al8Mg3FeSi6 (π-Fe) phase. The presence of the π-Fe phase was also confirmed by thermal analysis. The morphology of the primary Mg2Si phase changed from an octahedral to a dendrite form at 12.52 pct Mg. Any further Mg addition only coarsened the dendrites. Image analysis measurements revealed a close correlation between the measured and calculated phase fractions of the primary Mg2Si and Si phases. ThermoCalc and Scheil calculations show good agreement with the experimental results obtained from microstructural and thermal analyses.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. L. Lasa and J.M. Rodriguez-Ibabe: Mater. Sci. Eng. A, 2003, vol. A363, pp. 193–202.

    CAS  Google Scholar 

  2. G. Timmermans and L. Froyen: Wear, 1999, vol. 230, pp. 105–17.

    Article  CAS  Google Scholar 

  3. H.J. Kim: J. Mater. Sci. Technol, 2003, vol. 19, pp. 915–18.

    Article  CAS  Google Scholar 

  4. A. Hekmat-Ardakan, F. Ajersch, and X.-G. Chen: Wear, 2010, vol. 269, pp. 684–92.

    Article  CAS  Google Scholar 

  5. E.E. Schmid, K. von Oldenburg, and G. Frommeyer: Z. Metallkd., 1990, vol. 81, pp. 809–15.

    CAS  Google Scholar 

  6. J. Zhang, Y-Q. Wang, B. Yang, and B.L. Zhou, J. Mater. Res., 1999, vol. 14, pp. 68–74.

    Article  Google Scholar 

  7. J. Jorstad and D. Apelian: Int. J. Metalcast., 2009, vol.3, pp. 13–43.

    CAS  Google Scholar 

  8. L. Bäckerud, G. Chai, and L. Arnberg: Solidification Characteristics of Aluminum Alloys, Vol. 3, American Foundrymen’s Society/Skanaluminium, Universitetsforlaget AS. Oslo, Norway, 1986, pp. 137–44.

    Google Scholar 

  9. A. Hekmat-Ardakan, F. Ajersch, and X.-G. Chen: J. Mater. Sci., 2011, vol. 46, pp. 2370–78.

    Article  CAS  Google Scholar 

  10. A. Hekmat-Ardakan, F. Ajersch: J. Mater. Process. Technol., 2010, vol. 210, pp. 767–75.

    Article  CAS  Google Scholar 

  11. A. Mandal and M.M. Makhlouf: Light Metals, TMS, San Francisco, CA, 2009, pp. 57–62.

    Google Scholar 

  12. X. Zeng, M.M. Makhlouf, and S. Shankar: Light Metals, TMS, Orlando, FL, 2007, pp. 183–90.

    Google Scholar 

  13. X. Lin, C. Liu, Y. Zhai, and K. Wang: J. Mater. Sci., 2011, Vol. 46, pp. 1058–75.

    Article  CAS  Google Scholar 

  14. E. Jayakumar, T.P.D. Rajan, and B.C. Pai: Trans. Indian Inst. Met., 2012, Vol. 65(6), pp. 677–81.

    Article  CAS  Google Scholar 

  15. J. Zhang, Z. Fan, Y.Q. Wang and B.L. Zhou: Mater. Sci. Eng. A, 2000, vol. A281, pp. 104–12.

    CAS  Google Scholar 

  16. Q.D. Qin, W.X. Li, K. W. Zhou, S.L. Qiu, and Y.G. Zhao: Mater. Sci. Eng. A, 2010, vol. 527, pp. 2253–57.

    Article  Google Scholar 

  17. R. Hadian, M. Emamy, N. Varahram, and N. Nemati: Mater. Sci. Eng. A, 2008, vol. 490, pp. 250–57.

    Article  Google Scholar 

  18. Q.D. Qin, Y.G. Zhao, W. Zhou, and P.G. Cong: Mater. Sci. Eng. A, 2007, vol. 447, pp. 186–91.

    Article  Google Scholar 

  19. Q.D. Qin, Y.G. Zhao, C. Liu, P.G. Cong, and W. Zhou: J. Alloy. Compd., 2008, vol. 454, pp. 142–46.

    Article  CAS  Google Scholar 

  20. C. Li, X. Liu, and G. Zhang: Mater. Sci. Eng. A, 2008, vol. 497, pp. 432–37.

    Article  Google Scholar 

  21. Z. Zhang, Z. Fan, Y.Q. Wang, and B.L. Zhou: J. Mater. Sci. Lett., 2000, vol. 19, pp. 1825–28.

    Article  CAS  Google Scholar 

  22. Y.G. Zhao, Q.D. Qin, Y.H. Liang, W. Zhou, and Q.C. Jiang: J. Mater. Sci., 2005, vol. 40, pp. 1831–33.

    Article  CAS  Google Scholar 

  23. J. Zhang, Z. Fan, Y.Q. Wang, and B.L. Zhou: Scripta Mater., 2000, vol. 42, pp. 1101–06.

    Article  CAS  Google Scholar 

  24. A. Hekmat-Ardakan and F. Ajersch: Acta Mater., 2010, vol. 58, pp. 3422–28.

    Article  CAS  Google Scholar 

  25. Y.A. Chang, S. Chen, F. Zang, X. Yan, F. Xie, R. Schmid-Fetzer, and WA. Oates: Prog. Mater. Sci., 2004, vol. 49, pp. 313–45.

    Article  CAS  Google Scholar 

  26. H. Nami, A. Halvaee, H. Adgi, and A. Hadian: J. Mater. Process. Technol., 2010, vol. 210, pp. 1282–89.

    Article  CAS  Google Scholar 

  27. C. Li, Y. Y. Wu, H. Li, and X. F. Liu: Acta Mater., 2011, vol. 59, pp. 1058–67.

    Article  CAS  Google Scholar 

  28. Y. Wang, X.N. Wang, Z.X. Mei, X.L. Du, J. Zou, J.F. Jia, Q.K. Xue, X.N. Zhang, and Z. Zhang: J. Appl. Phys., 2007, vol. 102, p. 12602.

    Google Scholar 

  29. M. C. Flemings: Solidification Processing, McGraw-Hill, New York, 1974. p. 34.

    Google Scholar 

Download references

Acknowledgments

The authors would like to acknowledge the financial support provided by the Natural Sciences and Engineering Research Council of Canada (NSERC) and Rio Tinto Alcan through the NSERC-Rio Tinto Alcan Industrial Research Chair in Metallurgy of Aluminum Transformation at University of Québec at Chicoutimi.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to X. -G. Chen.

Additional information

Manuscript submitted December 6, 2012.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tebib, M., Ajersch, F., Samuel, A.M. et al. Solidification and Microstructural Evolution of Hypereutectic Al-15Si-4Cu-Mg Alloys with High Magnesium Contents. Metall Mater Trans A 44, 4282–4295 (2013). https://doi.org/10.1007/s11661-013-1769-9

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-013-1769-9

Keywords

Navigation