Skip to main content
Log in

Formation of Ultrafine Cellular Microstructure Around Alumina Particles in a Low-Carbon Steel

  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

Ultrafine cellular microstructures around alumina particles in a low-carbon steel were observed, which survived even after cyclic austenitization. This indicates that their formation is closely related to internal stress because of a structural heterogeneity during phase transformation rather than to externally applied forces or deformation. Thermo-elasto-plastic finite element analysis confirmed the evolution of a large hydrostatic pressure around an alumina particle due to thermal mismatch during cooling. Therefore, the fine cellular microstructure might be generated as a result of the hydrostatic pressure, which retards the phase transformation around the particle during cooling. In addition, we observed microstructural similarity with the same steel processed under an ultra-high pressure, which was the evidence for the role of the delay in the transformation caused by the hydrostatic pressure.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. H.V. Atkinson and G. Shi: Prog. Mater. Sci., 2003, vol. 48, pp. 457–520.

    Article  CAS  Google Scholar 

  2. T. Gladmanm: Ironmaking Steelmaking, 1992, vol. 19, pp. 457–63.

    Google Scholar 

  3. P.E. Waudby: in Inclusions, F. B. Pickering, ed., Institution of Metallurgists, London, 1979, pp. 95–107.

    Google Scholar 

  4. H.H. Schwalbe: Eng. Fract. Mech., 1977, vol. 9, pp. 795–835.

    Article  CAS  Google Scholar 

  5. W.C. Leslie: ISS Trans., 1983, vol. 2, pp. 1–24.

    CAS  Google Scholar 

  6. J. Lankford: Int. Metals Rev., 1977, vol. 22, pp. 221–28.

    CAS  Google Scholar 

  7. S.X. Jin, L.P. Guo, Z. Yang, D.J. Fu, C.S. Liu, R. Tang, F.H. Liu, Y.X. Qiao and D.H. Zhang: Mater. Charact., 2011, vol. 62, pp. 136–42.

    Article  CAS  Google Scholar 

  8. H.N. Han, C.-S. Oh, G. Kim and O. Kwon: Mater. Sci. Eng. A, 2009, vol. A499, pp. 462–68.

    CAS  Google Scholar 

  9. B.J. Klevebring: Metall. Trans. A, 1975, vol. 6A, pp. 319–27.

    CAS  Google Scholar 

  10. Y.Z. Tomita: Z. Metallkd., 1996, vol. 87, pp. 154–60.

    CAS  Google Scholar 

  11. J.H. Tweed and J. F. Knott: Met. Sci., 1983, vol. 17, pp. 44–47.

    Google Scholar 

  12. A. Ray, S.K. Paul and S. Jha: J. Mater. Eng. Perform., 1995, vol. 4, pp. 679–88.

    Article  CAS  Google Scholar 

  13. Y. Tomita: Mater. Technol., 1995, vol. 11, pp. 508–13.

    CAS  Google Scholar 

  14. J. Pacyna: Steel Res., 1986, vol. 57, pp. 586–92.

    CAS  Google Scholar 

  15. J.M. Gregg and H.K.D.H. Bhadeshia: Acta Mater., 1997, vol. 45, pp. 739–48.

    Article  CAS  Google Scholar 

  16. J.-H. Shim, Y.W. Cho, S.H. Chung, J.-D. Shim and D.N. Lee: Acta Mater., 1999, vol. 47, pp. 2751–60.

    Article  CAS  Google Scholar 

  17. F. Ishikawa, T. Takahashi and T. Ochi: Metall. Mater. Trans. A, 1994, vol. 25A, pp. 929–36.

    Article  CAS  Google Scholar 

  18. J.-H. Shim, Y.-J. Oh, J.-Y. Suh, Y.W. Cho, J.-D. Shim, J.-S. Byun and D.N. Lee: Acta Mater., 2001, vol. 49, pp. 2115–22.

    Article  CAS  Google Scholar 

  19. Y.M. Kim, T.-H. Ahn, K.K. Park, K.H. Oh and H.N. Han: Met. Mater. Int., 2011, vol. 17, pp. 181–86.

    Article  CAS  Google Scholar 

  20. T.G. Park, J.M. Kim, H.Y. Yoon, J.H. Lee, W.J. Chung and H.K. Kim: J. Korean Inst. Met. Mater., 2010, vol. 48, pp. 1021–27.

    Article  CAS  Google Scholar 

  21. S. Canovic, T. Jonsson and M. Halvarsson: J. Phys. Conf. Ser., 2008, vol. 126, 012054.

    Article  Google Scholar 

  22. J.-Y. Kang, S.C. Kim, J.-W. Oh, H.N. Han, K.H. Oh and H.-C. Lee: Scripta Mater., 2012, vol. 66, pp. 45–48.

    Article  CAS  Google Scholar 

  23. J. R. Barber: Elasticity, Kluwer Academic Publishers, New York, 1992, pp. 327–30.

    Book  Google Scholar 

  24. R. von Mises (1913) Göttin Nachr Math Phys 1:582–592.

    Google Scholar 

  25. ABAQUS User’s Manual for Version 6.7, Hibbitt, Karlson & Sorensen Inc., Pawtucket, RI, 2007.

  26. R. Morrell: Handbook of Properties of Technical and Engineering Ceramics, Her Majesty’s Stationary Office, London, 1987, pp. 1–255.

    Google Scholar 

  27. Smithells Metals Reference Book, 8th ed., Elsevier, U.K., 2004, pp. 14-30–14-45.

  28. H. N. Han, Y.-G. Lee, K.H. Oh and D.N. Lee: Mater. Sci. Eng. A, 1996, vol. A206, pp. 81–89.

    CAS  Google Scholar 

  29. H. Suzuki, S. Hashizume, Y. Yabuki, Y. Ichihara, S. Nakajima, and K. Kenmochi: Report of the Institute of Industrial Science, University of Tokyo, 1968, vol. 18, serial No. 117.

  30. J.-K. Choi, D.-H. Seo, J.-S. Lee, K.-K. Um and W.-Y. Choo: ISIJ Int., 2003, vol. 43, pp. 746–54.

    Article  CAS  Google Scholar 

  31. H. Beladi, G.L. Kelly, A. Shokouhi and P.D. Hodgson: Mater. Sci. Eng. A, 2004, vol. 371, pp. 343–52.

    Article  Google Scholar 

  32. B.Q. Han and S. Yue: J. Mater. Process. Technol., 2003, vol. 136, pp. 100–04.

    Article  CAS  Google Scholar 

  33. J.R. Patel and M. Cohen: Acta Metall., 1953, vol. 1, pp. 531–38.

    Article  CAS  Google Scholar 

  34. T.G. Nilan: Proceedings of the Symposium on Transformation and Hardenability in Steels, Climax Molybdenum Company of Michigan and the University of Michigan, Michigan, 1967, pp. 57–66.

  35. T.G. Nilan: TMS-AIME, 1967, vol. 239, pp. 898–909.

    CAS  Google Scholar 

  36. É.R. Kuteliya, L.S. Pankratova and É.I. Estrin: Met. Sci. Heat Treat., 1970, vol. 12, pp. 725–31.

    Article  Google Scholar 

  37. Y. Kaieda and A. Oguchi: J. Mater. Sci., 1985, vol. 20, pp. 1847–58.

    Article  CAS  Google Scholar 

  38. H.N. Han, C.G. Lee, C.-S. Oh, T.-H. Lee and S.-J. Kim: Acta Mater., 2004, vol. 52, pp. 5203–14.

    Article  CAS  Google Scholar 

  39. [39] H.N. Han, C.G. Lee, D.-W. Suh and S.-J. Kim: Mater. Sci. Eng. A, 2008, vol. 485, pp. 224–33.

    Article  Google Scholar 

  40. [40] J.-H. Kang, D.-W. Suh, J.-Y. Cho, K. H. Oh and H.-C. Lee: Scripta Mater., 2003, vol. 48, pp. 91–95.

    Article  CAS  Google Scholar 

  41. [41] N. Park, S. Khamsuk, A. Shibata and N. Tsuji: Scripta Mater., 2013, vol. 68, pp. 538–41.

    Article  CAS  Google Scholar 

  42. C. Ghosh, V.V. Basabe, J.J. Jonas, Y.-M. Kim, I.-H. Jung, and S. Yue: Acta Mater., 2013, vol. 61 (7), pp. 2348–62.

  43. [43] D. Turnbull: Solid State Phys., 1956, vol. 3, pp. 225–306.

    Article  CAS  Google Scholar 

  44. [44] A. Ali and H.K.D.H. Bhadeshia: Mater. Sci. Technol., 1990, vol. 6, pp. 781–84.

    Article  Google Scholar 

  45. [45] G.B. Olson and M. Cohen: Metall. Trans. A, 1976, vol. 7A, pp. 1897–1904.

    CAS  Google Scholar 

  46. [46] G.B. Olson and M. Cohen: Metall. Trans. A, 1976, vol. 7A, pp. 1905–14.

    CAS  Google Scholar 

  47. [47] J.W. Brooks, M.H. Loretto and R.E. Smallman: Acta Metall., 1979, vol. 27, pp. 1829–38.

    Article  CAS  Google Scholar 

  48. [48] J.W. Brooks, M.H. Loretto and R.E. Smallman: Acta Metall., 1979, vol. 27, pp. 1839–47.

    Article  CAS  Google Scholar 

  49. [49] J.F. Nye: Acta Metall., 1953, vol. 1, pp. 153–62.

    Article  CAS  Google Scholar 

  50. [50] E. Kroner: Appl. Mech. Rev., 1962, vol. 15, pp. 599–606.

    Google Scholar 

  51. [51] N.A. Fleck, G.M. Muller, M.F. Ashby and J.W. Hutchinson: Acta Metall. Mater., 1994, vol. 42, pp. 475–87.

    Article  CAS  Google Scholar 

  52. [52] D.H. Kim, S.-J. Kim, S.-H. Kim, A.D. Rollett, K.H. Oh and H.N. Han: Acta Mater., 2011, vol. 59, pp. 5462–71.

    Article  CAS  Google Scholar 

  53. H.K. Yeddu, A. Borgenstam, and J. Agren: Acta Mater., 2013, vol. 61 (7), pp. 2595–2606.

Download references

Acknowledgments

The authors gratefully acknowledge the financial support by the POSCO (2012Z035) and a grant from the Fundamental R&D Program for Core Technology of Materials funded by the Ministry of Knowledge Economy, the Republic of Korea (2012-10041169). J.-Y. Kang and H.N. Han would like to thank Dr. C.-S. Oh and Dr. T.-H. Lee in Korea Institute of Materials Science, Mr. J.-O. Oh in ILJIN Diamond Co. Ltd., and Dr. H.-C. Lee in the Graduate Institute of Ferrous Technology for the helpful discussion and the allowing the use of their HTHP apparatus.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Heung Nam Han.

Additional information

Manuscript submitted December 4, 2012.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kang, JY., Lee, S.H., Cho, YG. et al. Formation of Ultrafine Cellular Microstructure Around Alumina Particles in a Low-Carbon Steel. Metall Mater Trans A 44, 4098–4105 (2013). https://doi.org/10.1007/s11661-013-1753-4

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-013-1753-4

Keywords

Navigation