Skip to main content
Log in

The Influence of Si and Mg Content on the Microstructure, Tensile Ductility, and Stretch Formability of 6xxx Alloys

  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

In this study, the effect of Si and Mg content on the microstructure, tensile ductility, and stretch formability of naturally aged Al-Mg-Si alloys has been investigated using optical microscopy, scanning electron microscopy, tensile testing, forming limit diagram tests, and various modeling approaches. The results show that by raising the Si content in the alloy, the tensile ductility and stretch formability can be improved. By contrast, increasing the Mg content in the alloy has little influence on the tensile ductility and stretch formability. The results are discussed in terms of the effects of microstructural features such as solutes, clusters, and dispersoids on the work-hardening and strain rate-hardening behavior of the materials. Furthermore, thermodynamic modeling is employed to predict microstructures that could improve the stretch formability of the high Mg content alloy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17

Similar content being viewed by others

References

  1. S.M. Hirth, G.J. Marshall, S.A. Court and D.J. Lloyd: Mater. Sci. Eng. A, 2001, vol. 319–321, pp. 452–56.

    Google Scholar 

  2. Y. Birol: Mater. Sci. Eng. A, 2005, vol. 391, pp. 175–80.

    Article  Google Scholar 

  3. S.S. Hecker: J. Eng. Mater. Technol., 1975, vol. 97, pp. 66–73.

    Article  CAS  Google Scholar 

  4. J.E. Bird and J. L. Duncan (1981) Metall. Trans. A, 12A, pp. 235–41.

    Google Scholar 

  5. A.K. Ghosh: J. Eng. Mater. Technol., 1977, vol. 99, pp. 264–74.

    Article  CAS  Google Scholar 

  6. A.K. Sachdev (1990) Metall. Trans. A 21A, pp. 165–75.

    CAS  Google Scholar 

  7. S.J. Murtha: SAE Tech. Paper Ser., no. 950718, 1995, pp. 657–66.

  8. J. Bottema, C. Lahaye, R. Baartman, L. Zhuang, P. De Smet, and F. Schoepen: SAE Tech. Paper Ser., no. 981007, 1998, pp. 1–8.

  9. E. Brünger, O. Engler and J. Hirsch (2006) Virtual Fabrication of Aluminium Products: Microstructural Modeling in Industrial Aluminum Fabrication Processes. Wiley-VCH, Weinheim, , p. 55.

    Google Scholar 

  10. D.V. Wilson, A.R. Mirshames and W.T. Roberts: Int. J. Mech. Sci., 1983, vol. 25, pp. 859–70.

    Article  Google Scholar 

  11. R. Pearce and D. Ganguli: J. Inst. Met., 1972, vol. 100, pp. 289–95.

    CAS  Google Scholar 

  12. P.W. Beaver and B.A. Parker: Mater. Sci. Eng., 1986, vol. 82, pp. 217–24.

    Article  CAS  Google Scholar 

  13. R.G. Kamat, J.F. Butler, Jr., S.J. Murtha and F.S. Bovard (2002) Mater. Sci. Forum 396–402, pp. 1591–96.

    Article  Google Scholar 

  14. S.K. Das (2006) Mater. Sci. Forum 519–521:1239–44.

    Article  Google Scholar 

  15. ASTM Standard E2218-02, 2008.

  16. M. Weiss, M.E. Dingle, B.F. Rolfe and P.D. Hodgson: J. Eng. Mater. Technol., 2007, vol. 129, pp. 530–37.

    Article  CAS  Google Scholar 

  17. R.T. Dehoff and F.N. Rhines: Quantitative Microscopy, p. 46, McGraw-Hill, New York, 1968.

    Google Scholar 

  18. L.M. Brown (1979) Strength of Metals and Alloys. Pergamon, Aachen, , p. 1551.

    Google Scholar 

  19. TTAL6: TT Al-Based Alloys Database, Version 6.0, ThermoTech Ltd., Surrey Technology Center, Guildford, U.K., 2007.

  20. N. C. W. Kuijpers, F. J. Vermolen, C. Vuik, P.T.G. Koenis, K.E. Nilsen, S. van der Zwaag (2005) Mater. Sci. Eng. A 394, pp. 9–19.

    Article  Google Scholar 

  21. W. J. Poole, X. Wang, D. J. Lloyd, J. D. Embury: Philos. Mag., 2010, vol. 85, pp. 3113–35.

    Article  Google Scholar 

  22. K. Strobel, E. Sweet, M. Easton, JF Nie and M. Couper: Mater. Sci. Forum, 2010, vol. 654–656, pp. 926–29.

    Article  Google Scholar 

  23. K.J. Kim, C.W. Kim, B.I. Choi, C.W. Sung, H.Y. Kim, S.T. Won, H.Y. RYU: J. Solid Mech. Mater. Eng., 2008, vol. 2, pp. 574–81.

    Article  Google Scholar 

  24. P. M. Rodrigues: Sheet Met. Ind., 1984, vol. 6, pp. 492–95.

    Google Scholar 

  25. K. Campbell, L. Dover, T.R. Ramachandran and J.D. Embury: Met. Forum, 1979, vol. 2, pp. 229–35.

    CAS  Google Scholar 

  26. A. Korbel, J.D. Embury, M. Hatherly, P.L. Martin and H.W. Erbsloh: Acta Metall., 1986, vol. 34, pp. 1999–2009.

    Article  CAS  Google Scholar 

  27. R.C. Dorward: J. Mater. Eng. Perform., 1994, vol. 3, pp. 115–21.

    Article  CAS  Google Scholar 

  28. L.R. Morris, R. Iricibar, J.D. Embury and J.L. Duncan: Aluminum transformation technology and applications, p. 549, ASM, Buenos Aires, 1982.

    Google Scholar 

  29. O. Engler, J. Hirsch: Mater. Sci. Eng. A, 2002, vol. 336, pp. 249–62.

    Article  Google Scholar 

  30. Y. Huang and F.J. Humphreys (2012) Mater. Chem. Phys. 132: 166–74.

    Article  CAS  Google Scholar 

  31. D.J. Lloyd: Metall. Trans. A, 1980, vol. 11A, pp. 1287–94.

    CAS  Google Scholar 

  32. L.M. Cheng, W.J. Poole, J.D. Embury, D.J. Lloyd: Metall. Mater. Trans. A, 2003, vol. 34A, pp. 2473–81.

    Article  CAS  Google Scholar 

  33. N.D. Alexopoulos and M. Tiryakioglu (2009) Mater. Sci. Eng. A 507:236–40.

    Article  Google Scholar 

  34. P.W. Beaver: J. Mech. Work. Technol., 1982, vol. 7, pp. 215–31.

    Article  Google Scholar 

  35. Y. Estrin and L.P. Kubin (1995) Continuum Models for Materials with Microstructure. Wiley, Chichester, p. 395.

    Google Scholar 

  36. G.B. Gibbs: Mater. Sci. Eng. A, 1969, vol. 4, pp. 313–28.

    Article  Google Scholar 

  37. L.P. Kubin and Y. Estrin: Acta Metall. Mater., 1990, vol. 38, pp. 697–708.

    Article  CAS  Google Scholar 

  38. M.S. Duesbery: Modell. Simul. Mater. Sci. Eng., 1998, vol. 6, pp. 35–49.

    Article  CAS  Google Scholar 

  39. W.F. Hosford: Mechanical behavior of materials, p. 162, Cambridge University Press, New York, 2005.

    Book  Google Scholar 

  40. J.M. Dowling and J.W. Martin (1976) Acta Metall. 24:1147–53.

    Article  CAS  Google Scholar 

  41. Y. Estrin and H. Mecking: Acta Metall., 1984, vol. 32, pp. 57–70.

    Article  Google Scholar 

  42. S.A. Court, K.M. Gatenby and D. J. Lloyd: Mater. Sci. Eng. A, 2001, vol. 319–321, pp. 443–47.

    Google Scholar 

  43. N. Yu. Zolotorevsky, A.N. Solonin, A.Yu. Churyum, V.S. Zolotorevsky (2009) Mater. Sci. Eng. A 502:111–17.

    Article  Google Scholar 

  44. C.R. Hutchinson, J.D.C. Teixeira, L. Bourgeois: The 11th International Conference on Al Alloys, p. 1647, Wiley-VCH GmbH & Co., Weinheim, 2008.

    Google Scholar 

  45. A.K. Gupta, D.J. Lloyd, S.A. Court: Mater. Sci. Eng. A, 2001, vol. 316, pp. 11–17.

    Article  Google Scholar 

  46. J. O. Andersson, T. Helander, L. Höglund, P.F. Shi, B. Sundman: CALPHAD, 2002, vol. 26, pp. 273–312.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors thank the Aluminum Corporation of China Ltd. (Chalco) for supporting this work financially and for providing materials through the Australia-China International Centre for Light Alloys Research (ICLAR). Seminal input of Professor Barry Muddle in alloy selection and useful discussions with him are gratefully acknowledged. Thanks is due to Dr. John Taylor at the University of Queensland for his help with thermodynamic modeling. Dr. Matthias Weiss at Deakin University is acknowledged for assistance with the forming limit tests.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hao Zhong.

Additional information

Manuscript submitted November 7, 2012.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhong, H., Rometsch, P.A. & Estrin, Y. The Influence of Si and Mg Content on the Microstructure, Tensile Ductility, and Stretch Formability of 6xxx Alloys. Metall Mater Trans A 44, 3970–3983 (2013). https://doi.org/10.1007/s11661-013-1740-9

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-013-1740-9

Keywords

Navigation