Skip to main content

Advertisement

Log in

High-Temperature Tensile Properties of Nano-Oxide Dispersion Strengthened Ferritic Steels Produced by Mechanical Alloying and Spark Plasma Sintering

  • Communication
  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

Oxide-dispersion strengthened (ODS) ferritic steels were produced by mechanical alloying and subsequent spark plasma sintering. Very fast heating rates were used to minimize porosity when controlling grain size and precipitation of dispersoids within a compacted material. Sintering cycles performed at 1373 K (1100 °C) induced heterogeneous, but fine grain size distribution and high density of nano-oxides. Yield strengths at room temperature and at 923 K (650 °C) are 975 MPa and 298 MPa, respectively. Furthermore, high-temperature ductility is much increased: total strain of 28 pct at 923 K (650 °C).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. S. Ukai, M. Harada, H. Okada, M. Inoue, S. Nomura, S. Shikakura, T. Nishida, M. Fujiwara, K. Asabe: J. Nucl. Mater., 1993, vol. 204, pp. 65–73.

    Article  CAS  Google Scholar 

  2. S. Ukai, M. Fujiwara: J. Nucl. Mater., 2002, vol. 307-311, pp. 749-57.

    Article  Google Scholar 

  3. R.L. Klueh, D.S. Gelles, S. Jitsukawa, A. Kimura, G.R. Odette, B. van der Schaaf, M. Victoria: J. Nucl. Mater., 2002, vol. 307–311, pp. 455–65.

    Article  Google Scholar 

  4. M.J. Alinger, G.R. Odette, D.T. Hoelzer: Acta Mater., 2009, vol. 57, pp. 392–406.

    Article  CAS  Google Scholar 

  5. Y. De Carlan J.L. Béchade, P. Dubuisson, J.L. Seran, P. Billot, A. Bougault, T. Cozzika, S. Doriot, D. Hamon, J. Henry, M. Ratti, N. Lochet, D. Nunes, P. Olier, T. Leblond, M.H. Mathon: J. Nucl. Mater., 2009, vol. 386–388, pp. 430-32.

    Article  Google Scholar 

  6. P. Dubuisson, Y. de Carlan, V. Garat, M. Blat: J. Nucl. Mater., 2012, vol. 428, pp. 6-12.

    Article  CAS  Google Scholar 

  7. S. Saroja, A. Dasgupta, R. Divakar: J.Nucl. Mater., 2011, vol. 4009, pp. 131-39.

    Article  Google Scholar 

  8. M. Wang, Z. Zhou, H. Sun, H. Hu, S. Li: Mater. Sci. Eng. A., 2013, vol. 559, pp. 287-92.

    Article  CAS  Google Scholar 

  9. W.M. Guo, Z.G. Yang, G.J. Zhang: Int. J. Refract. Met. Hard Mater., 2011, vol. 29, pp. 452-55.

    Article  CAS  Google Scholar 

  10. D. Fabrègue, J. Piallat, E. Maire, Y. Jorand, V. Massardier-Jourdan, G. Bonnefont: Powder Metallurgy, 2012, vol. 55, pp. 76-79.

    Article  Google Scholar 

  11. R. Orru, R. Licheri, M. Locci, A. Cincotti, G. Cao, Mater. Sci. Eng. R, 2009, vol. 63, pp. 127–287.

    Article  Google Scholar 

  12. T. Grosdidier, G. Ji, S. Launois: Scripta Mater., 2007, vol. 57, pp. 525-28.

    Article  CAS  Google Scholar 

  13. G. Ji, T. Grosdidier, N. Bozzolo, S. Launois: Intermetallics., 2007, vol. 15, pp. 108-18.

    Article  CAS  Google Scholar 

  14. M. Ratti, D. Leuvrey, M.H. Mathon, Y. de Carlan: J. Nucl. Mater., 2009, vol. 386–388, pp. 540-43.

    Article  Google Scholar 

  15. L. Toualbi, M. Ratti, G. André, F. Onimus, Y. de Carlan, J. Nucl. Mater., 2011, vol. 417, pp. 225–28.

    Article  CAS  Google Scholar 

  16. A. Molinari, S. Libardi, M. Leoni, P. Scardi, Acta Mater., 2010, vol. 58, pp. 963–66.

    Article  CAS  Google Scholar 

  17. D. Bouvard: Métallurgie des poudres, Mim, Édition Hermes-Lavoisier, Paris, 2002.

  18. M.H. Mathon, M. Perrut, S.Y. Zhong, Y. de Carlan: J. Nucl. Mater., 2012, vol. 428, pp. 147–53.

    Article  CAS  Google Scholar 

  19. Q.X. Sun, T. Zhang, X.P. Wang, Q.F. Fang, T. Hao, C.S. Liu: J. Nucl. Mater., 2012, vol. 424, pp. 279–84.

    Article  CAS  Google Scholar 

  20. Z. Oksiuta, P. Mueller, P. Spätig, N. Baluc, J. Nucl. Mater., 2011, vol. 412, pp. 221–26.

    Article  CAS  Google Scholar 

  21. L. Guo, C. Jia, B. Hu, H. Li: Mater. Sci. Eng. A, 2010, vol. 527, pp. 5220–24.

    Article  Google Scholar 

  22. A. Garcia-Juncedan, M. Hernandez-Mayoral, M. Serrano, Mater. Sci. Eng. A, 2012, vol. 556, pp. 696–703.

    Article  Google Scholar 

  23. B. Fournier, A. Steckmeyer, A.-L. Rouffie, J. Malaplate, J. Garnier, M. Ratti, P. Wident, L. Ziolek, I. Tournie, V. Rabeau, J.M. Gentzbittel, T. Kruml, I. Kubena: J. Nucl. Mater., 2012, vol. 430, pp. 142-49.

    Article  CAS  Google Scholar 

  24. P. Unifantowicza, Z. Oksiuta, P. Olier, Y. De Carlan, and N. Baluc: Fusion Eng. Des., 2011, vol. 86, pp. 2413–16.

  25. A. Takahashi, Z. Chen, N. Ghoniem, N. Kioussis: J. Nucl. Mater., 2011, vol. 417, pp. 1098-101.

    Article  CAS  Google Scholar 

  26. A. Steckmeyer, M. Praud, B. Fournier, J. Malaplate, J. Garnier, J.L. Béchade, I. Tournié, A. Tancray, A. Bougault, and P. Bonnaillie: J. Nucl. Mater., 2010, vol. 405, pp. 95–100.

    Article  CAS  Google Scholar 

  27. R. Kasada, S.G. Lee, J. Isselin, J.H. Lee, T. Omura, A. Kimura, T. Okuda, M. Inoue, S. Ukai, S. Ohnuki, T. Fujisawa, F. Abe: J. Nucl. Mater., 2011, vol. 417, pp. 180–84.

    Article  CAS  Google Scholar 

  28. Y.H. Zhao, Y.Z. Guo, Q. Wei, A.M. Dangelewicz, C. Xu, Y.T. Zhu, T.G. Langdon, Y.Z. Zhou, E.J. Lavernia: Scripta Mater., 2008, vol. 59, pp. 627-30.

    Article  CAS  Google Scholar 

  29. K.A. Darling, B.G. Butler, H.E. Maupin, L.J. Kecskes, and S.N. Mathaudhu: Proceedings of the 2012 International Conference on Powder Metallurgy & Particulate Materials, Las Vegas, NV, pp. 0929–0939.

  30. D. Fabrègue, T. Pardoen: J. Mech. Phys. Solids., 2008, vol. 56(3), pp. 719-41.

    Article  Google Scholar 

  31. G. Ji, F. Bernard, S. Launois, T. Grosdidier, Mater. Sci. Eng. A, 2013, vol. 559, pp. 566–73.

    Article  CAS  Google Scholar 

  32. Y. Zhao, T. Topping, J.F. Bingert, J. Thornton, A.M. Dangelewicz, Y. Li: Adv. Mater., 2008, vol. 20, pp. 3028-33.

    Article  CAS  Google Scholar 

  33. C.C. Koch: Scripta Mater., 2003, vol. 49, pp. 657-62.

    Article  CAS  Google Scholar 

  34. Y. Wang, M. Chen, F. Zhou, E. Ma: Nature, 2002, vol. 419, 912–15.

    Article  CAS  Google Scholar 

  35. A.K. Mukherjee: Mater. Sci. Eng. A, 2002, vol. 322, pp. 1–22.

    Article  Google Scholar 

Download references

The authors gratefully thank F. Mercier and G. Bonnefont for their assistance in SPS compaction and D. Hamon, P. Wident and A. Bougault for their contribution in materials characterization. The current study was performed with financial support of the French CNRS GdR GEDEPEON and for the MATTER project within the seventh European framework. The current study was made in the frame of a tripartite agreement between the CEA, AREVA NP, and EDF.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xavier Boulnat.

Additional information

Manuscript submitted January 7, 2013.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Boulnat, X., Fabregue, D., Perez, M. et al. High-Temperature Tensile Properties of Nano-Oxide Dispersion Strengthened Ferritic Steels Produced by Mechanical Alloying and Spark Plasma Sintering. Metall Mater Trans A 44, 2461–2465 (2013). https://doi.org/10.1007/s11661-013-1719-6

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-013-1719-6

Keywords

Navigation