Skip to main content
Log in

A Combined Hot Dip Aluminizing/Laser Alloying Treatment to Produce Iron-Rich Aluminides on Alloy Steel

  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

In the present study, a two-step surface treatment was employed to produce an iron-rich aluminide surface layer on 9Cr1Mo steel. In the first step, the steel specimen was immersed in a 1073 K (800 °C) aluminizing bath for 90 seconds to obtain an Al-rich iron aluminide/Al double layer. Then, the aluminum-rich layer and some portion of the substrate material underneath were melted using a pulsed Nd:YAG laser with different pulse energies in the range of 4 to 8 J. The surface and cross section of the alloyed layers were studied using optical microscopy, scanning electron microscopy, an electron microprobe, and X-ray diffraction analyses. The results showed that after laser remelting of the hot dipped aluminized steel at a pulse energy of 7 J, an integrated layer of FeAl replaced the primary layer.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. G.Y. Lai (2007) High Temperature Corrosion and Materials Applications, 1 st edn. ASM International, Materials Park, pp. 117-44.

    Google Scholar 

  2. S. Matar and L.F. Hatch: Chemistry of petrochemical processes, 2 nd ed., Gulf publishing company, Houston, Texas, 2000, pp.114-6.

    Google Scholar 

  3. K. Natesan, P.K. Datta (2002) In: J.H. Westbrook and R.C. Fleischer (Eds.): Intermetallic compounds: Principles and Practice, Vol. 3. John Wiley & Sons, West Sussex, pp. 707–19.

    Chapter  Google Scholar 

  4. V.R. Parameswaran: JOM, 1992, vol. 44, pp. 41-3.

    Article  Google Scholar 

  5. Y. Nishino, C. Kumada and S. Asano: Scripta Mater., 1997, vol. 36 (4), pp. 461-6.

    Article  CAS  Google Scholar 

  6. P. Johansson, B. Uhrenius, A. Wilson and U. Stahlberg: Powder Metall., 1996, vol. 39 (1), pp. 53-8.

    CAS  Google Scholar 

  7. Z. Liu, W. Gao and F. Wang: Scripta Mater., 1998, vol. 39 (11), pp. 1497-502.

    Article  CAS  Google Scholar 

  8. S. PalDey and S.C. Deevi: Mater. Sci. Eng. A, 2003, vol. 355, pp. 208-15.

    Article  Google Scholar 

  9. P. Fan, E. Riddle, Z.Z. Fang and H.Y. Sohn: Surf. Coat. Technol., 2008, vol. 202, pp. 6090-4.

    Article  CAS  Google Scholar 

  10. N. Masahashi, S. Watanabe, N. Nomura, S. Semboshi and S. Hanada: Intermetallics, 2005, vol. 13, pp. 717-26.

    Article  CAS  Google Scholar 

  11. S. Frangini and A. Masci: Surf. Coat. Technol., 2004, vol. 184, pp. 31-9.

    Article  CAS  Google Scholar 

  12. C. Xiao and W. Chen: Surf. Coat. Technol., 2006, vol. 201, pp. 3625-32.

    Article  CAS  Google Scholar 

  13. J.M. Guilemany, N. Cinca, S. Dosta and C.R.C. Lima: Intermetallics, 2007, vol. 15, pp. 1384-94.

    Article  CAS  Google Scholar 

  14. B. Szczucka-Lasota, B. Formanek and A. Hernas: J. Mater. Process. Tech., 2005, vol. 164-165, pp. 930-4.

    Article  Google Scholar 

  15. B. Szczucka-Lasota, B. Formanek, A. Hernas and K. Szymanski: J. Mater. Process. Tech., 2005, vol. 164-165, pp. 935-9.

    Article  Google Scholar 

  16. S-C. Wei, B-S. Xu, H-D. Wang, G. Jin, H. Lv (2007) Surf. Coat. Technol. 201:5294-7.

    Article  CAS  Google Scholar 

  17. Y. Zhang, B.A. Pint, K.M. Cooley and J.A. Haynes: Surf. Coat. Technol., 2005, vol. 200, pp. 1231-5.

    Article  CAS  Google Scholar 

  18. R.S. Dutta, S. Majumdar, A. Laik, K. Singh, U.D. Kulkarni, I.G. Sharma and G.K. Dey: Surf. Coat. Technol., 2011, vol. 205, pp. 4720-5.

    Article  CAS  Google Scholar 

  19. C. Houngniou, S. Chevalier and J. P. Larpin: Oxid. Met., 2006, vol. 65 (5-6), pp. 409-38.

    Article  CAS  Google Scholar 

  20. T. Zhang, Y. Luo and D.Y. Li: JMEPEG, 1999, vol. 8, pp. 635-40.

    Article  CAS  Google Scholar 

  21. Z. Xiao-lin, Y. Zheng-jun, G. Xue-dong, C. Wei and Z. Ping-ze: Trans. Nonferrous Met. Soc. China, 2009, vol. 19, pp. 143-8.

    Article  Google Scholar 

  22. S. Kobayashi and T. Yakou: Mater. Sci. Eng. A, 2002, vol. 338, pp. 44-53.

    Article  Google Scholar 

  23. S. K. Mannan, V. Seetharaman and V.S. Raghunathan: Mater. Sci. Eng., 1983, vol. 60, pp. 79-86.

    Article  CAS  Google Scholar 

  24. P.N. Bindumadhavan, S. Makesh, N. Gowrishankar, H. KengWaha and O. Prabhakar: Surf. Coat. Technol., 2000, vol. 127, pp. 252-9.

    Article  CAS  Google Scholar 

  25. T. Sasaki and T. Yakou: Surf. Coat. Technol., 2006, vol. 201, pp. 2131-9.

    Article  CAS  Google Scholar 

  26. G. Sharma, R. Awasthi and K. Chandra: Intermetallics, 2010, vol. 18, pp. 2124-7.

    Article  CAS  Google Scholar 

  27. H.R. Shahverdi, M.R. Ghomashchi, S. Shabestari and J. Hejazi: J. Mater. Process. Tech., 2002, vol. 124, pp. 345-52.

    Article  CAS  Google Scholar 

  28. W. Deqing, S. Ziyuan and Z. Longjiang: Appl. Surf. Sci., 2003, vol. 214, pp. 304-11.

    Article  Google Scholar 

  29. R.W. Hayes, Y.L. Jeng, E.J. Lavernia and J. Wolfenstine: Scipta Metall. Mater., 1995, vol. 32 (3), pp. 433-7.

    Article  CAS  Google Scholar 

  30. E. Gemelli, A. Galerie, M. Caillet (1997) Solid State Ionics 95:81–86.

    Article  CAS  Google Scholar 

  31. S.A.Vaziri, H.R. Shahverdi, M.J. Torkamany, and S.G. Shabestari: Opt. Laser Eng., 2009, vol. 47, pp. 971–75.

  32. A. Hirose, T. Ueda and K.F. Kobayashi: Mater. Sci. Eng. A, 1993, vol. 160, pp. 143-53.

    Article  Google Scholar 

  33. G. Sharma, R. Awasthi and K. Chandra: Intermetallics, 2010, vol. 18, pp. 2124-7.

    Article  CAS  Google Scholar 

  34. B. Abdolahi, H.R. Shahverdi, M.J. Torkamany and M. Emami: Appl. Surf. Sci., 2011, vol. 257 (23), pp. 9921-4.

    Article  CAS  Google Scholar 

  35. L. Agudo, D. Eyidi, C.H. Schmaranzer, E. Arenholz, N. Jank, J. Bruckner and A.R. Pyzalla: J. Mater. Sci., 2007, vol. 42, pp. 4205-14.

    Article  CAS  Google Scholar 

  36. W-J. Cheng and C-J.Wang: Surf. Coat. Technol., 2011, vol. 205, pp. 4726–31.

  37. D. Wang and Z. Shi: Appl. Surf. Sci., 2004, vol. 227, pp. 255-60.

    Article  CAS  Google Scholar 

  38. E. Kannatey-Asibu, Jr.: Principles of Laser Materials Processing, 1 st ed., Wiley, New Jersey, 2009, pp. 262-4.

    Book  Google Scholar 

  39. J.C. Ion (2005) Laser Processing of Engineering Materials: Principles, Procedure and Industrial Application, 1st edn. Elsevier, Amsterdam, p. 263.

    Google Scholar 

  40. G. Ghosh, K. Korniyenko, T. Velikanova, and V. Sidorko: in Ternary Alloy Systems Phase Diagrams, Crystallographic and Thermodynamic Data, G. Effenberg and S. Ilyenko, eds., Springer, New York, 2008, vol. 11, pp. 30–66.

  41. P. Gilgien, A. Zryd and W. Kurz: Acta Metall. Mater., 1995, vol. 43 (9), pp. 3477-87.

    Article  CAS  Google Scholar 

  42. T.V. Tarasova: Met. Sci. Heat Treat., 2002, vol. 44 (3-4), pp. 124-7.

    Article  CAS  Google Scholar 

  43. K.E. Kobayashi: in Non-Equilibrium Processing of Materials, C. Suryanarayana ed., Pergamon, Oxford, 2002, 1st edn., pp. 89–116.

  44. J.F. Ready: LIA Handbook of Laser Materials Processing, Laser Institute of America, Orlando, 2001, pp. 43-54.

    Google Scholar 

  45. M. Palm: Intermetallics, 2005, vol. 13, pp. 1286-95.

    Article  CAS  Google Scholar 

  46. R.A. Buckley and S. Kaviani: Mater. Sci. Eng. A, 1998, vol. 258, pp. 173-80.

    Article  Google Scholar 

  47. W. Kurz, D.J. Fisher (1992) Fundamentals of Solidification, 3rd edn. Trans Tech publications, Aedermannsdorf, pp. 134-8.

    Google Scholar 

  48. J. Sabbaghzadeh, M.J. Hamedi, F. Malek Ghaini, and M.J. Torkamany: Metall. Mater. Trans. B, 2008, vol. 39B, pp. 340–47.

  49. J. Sabbaghzadeh, M. Aziz and M.J. Torkamany: Opt. Laser Technol., 2008, vol. 40, pp. 289-96.

    Article  Google Scholar 

Download references

Acknowledgments

The authors would like to gratefully acknowledge Ryutaro Yamagata for his technical assistance.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hamid Reza Shahverdi.

Additional information

Manuscript submitted October 21, 2012.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Emami, M., Shahverdi, H.R., Hayashi, S. et al. A Combined Hot Dip Aluminizing/Laser Alloying Treatment to Produce Iron-Rich Aluminides on Alloy Steel. Metall Mater Trans A 44, 3176–3184 (2013). https://doi.org/10.1007/s11661-013-1666-2

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-013-1666-2

Keywords

Navigation